949 resultados para giant unilamellar vesicles
Resumo:
Step bunching develops in the epitaxy of SrRuO3 on vicinal SrTiO3(001) substrates. We have investigated the formation mechanisms and we show here that step bunching forms by lateral coalescence of wedgelike three-dimensional islands that are nucleated at substrate steps. After coalescence, wedgelike islands become wider and straighter with growth, forming a self-organized network of parallel step bunches with altitudes exceeding 30 unit cells, separated by atomically flat terraces. The formation mechanism of step bunching in SrRuO3, from nucleated islands, radically differs from one-dimensional models used to describe bunching in semiconducting materials. These results illustrate that growth phenomena of complex oxides can be dramatically different to those in semiconducting or metallic systems.
Resumo:
The heat exchanged at the low-temperature first-order magnetostructural transition is directly measured in Gd5Ge4 . Results show that the origin and the temperature dependence of the heat exchanged varies with the reversible/irreversible character of the first-order transition. In the reversible regime, the heat exchanged by the sample is mostly due to the latent heat at the transition and decreases with decreasing temperature, while in the irreversible regime, the heat is irreversibly dissipated and increases strongly with decreasing temperature, reaching a value of 237 J/kg at 4 K.
Resumo:
Introduction: Giant cell tumour (GCT) is a benign but locally aggressive primary osteolytic bone tumour, prone to local recurrence after surgery. Denosumab is a human antibody against RANKL, an over-expressed ligand present on normal multinucleated cells, responsible for bone destruction in GCT. We report the case of a patient with an advanced GCT of the distal radius. The lesion was treated with adjuvant denosumab , followed by curettage. Clinical case: A 28 years old patient presented with a classical honeycomb osteolytic lesion in the left distal radius. Core-needle biopsy confirmed the diagnosis of GCT. Due to the proximity to the radio-carpal joint and advanced scalloping of the metaphyseal cortical bone, joint-salvage surgery was not possible. We initiated a neo-adjuvant treatment with denosumab (XGEVA), 120mg/ week for 1 month, followed by monthly injections for 6 months. During this time, a substantial bone recorticalization, without progression of the size of the tumour was noted. No local or systemic side effects were observed. We performed intra-lesional (curettage) excision and bone grafting after 6 months. Histological analysis revealed islets (10%) of viable tumour cells within fibrous tissue. Post-op evolution was eventless. Discussion: While surgery remains the treatment of choice for GCT, joint-salvage may not always be possible in case of extensive epiphyseal involvement. The presence of osteoclast-like giant cells seems to make those lesions prone to the specific anti-RANKL treatment with denosumab. Denosumab appears to slow down tumour growth and promote recorticalization of eroded bone. It might allow less aggressive surgery in selected cases.
Resumo:
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.
Resumo:
Giant cell arteritis (GCA) is the most common primary vasculitis of adults. The incidence of this disease is practically nil in the population under the age of 50 years, then rises dramatically with each passing decade. The median age of onset of the disease is about 75 years. As the ageing population expands, it is increasingly important for ophthalmologists to be familiar with GCA and its various manifestations, ophthalmic and non-ophthalmic. A heightened awareness of this condition can avoid delays in diagnosis and treatment. It is well known that prompt initiation of steroids remains the most effective means for preventing potentially devastating ischaemic complications. This review summarizes the current concepts regarding the immunopathogenetic pathways that lead to arteritis and the major phenotypic subtypes of GCA with emphasis on large vessel vasculitis, novel modalities for disease detection and investigative trials using alternative, non-steroid therapies.
Resumo:
Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm.
Resumo:
Giant cell arteritis is a potentially systemic disease of medium-sized and large caliber arteries, showing a preferential manifestation in the extracranial branches of the carotid artery. The diagnosis is oriented to clinical and histomorphological criteria which will be critically reviewed. Particular emphasis is placed on the differentiation from normal aging processes and from healing stages under steroid therapy. In addition, the advances in our understanding of the disease pathomechanism during the last 10 years will be briefly presented as the basis for the hitherto empiric steroid treatment.
Resumo:
Over the past few years, technological breakthroughs have helpedcompetitive sports to attain new levels. Training techniques, athletes' management and methods to analyse specific technique and performancehave sharpened, leading to performance improvement. Alpine skiing is not different. The objective of the present work was to study the technique of highy skilled alpine skiers performing giant slalom, in order to determine the quantity of energy that can be produced by skiers to increase their speed. To reach this goal, several tools have been developed to allow field testing on ski slopes; a multi cameras system, a wireless synchronization system, an aerodynamic drag model and force plateforms have especially been designed and built. The analyses performed using the different tools highlighted the possibility for several athletes to increase their energy by approximately 1.5 % using muscular work. Nevertheless, the athletes were in average not able to use their muscular work in an efficient way. By offering functional tools such as drift analysis using combined data from GPS and inertial sensors, or trajectory analysis based on tracking morphological points, this research makes possible the analysis of alpine skiers technique and performance in real training conditions. The author wishes for this work to be used as a basis for continued knowledge and understanding of alpine skiing technique. - Le sport de compétition bénéficie depuis quelques années des progrès technologiques apportés par la science. Les techniques d'entraînement, le suivi des athlètes et les méthodes d'analyse deviennent plus pointus, induisant une nette amélioration des performances. Le ski alpin ne dérogeant pas à cette règle, l'objectif de ce travail était d'analyser la technique de skieurs de haut niveau en slalom géant afin de déterminer la quantité d'énergie fournie par les skieurs pour augmenter leur vitesse. Pour ce faire, il a été nécessaire de developer différents outils d'analyse adaptés aux contraintes inhérentes aux tests sur les pistes de skis; un système multi caméras, un système de synchronisation, un modèle aérodynamique et des plateformes de force ont notamment été développés. Les analyses effectuées grâce à ces différents outils ont montré qu'il était possible pour certains skieur d'augmenter leur énergie d'environ 1.5 % grâce au travail musculaire. Cependant, les athlètes n'ont en moyenne pas réussi à utiliser leur travail musculaire de manière efficace. Ce projet a également rendu possible des analyses adaptées aux conditions d'entraînement des skieurs en proposant des outils fonctionnels tels que l'analyse du drift grâce à des capteurs inertiels et GPS, ainsi que l'analyse simplifiée de trajectoires grâce au suivi de points morphologiques. L'auteur espère que ce travail servira de base pour approfondir les connaissances de la technique en ski alpin.