275 resultados para gag


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The child who presents with acute coma runs a high risk of cardiopulmonary insufficiency, direct brain injury or even cerebral herniation. The case-management of such child requires a coma-specific emergent evaluation, immediate treatment of any hypoxicischemic insults and of the underlying cause. The coma-specific examination includes performance of child-adapted Glasgow Coma Score, the evaluation of brain stem functions such as pupillary response to light, cough- and gag reflex, and determination of all vital signs including body temperature. Treatment of hypoxicischemic insults includes control of airways and ventilation in patient with coma defined as GCS <8; liberal treatment of impaired cardiovascular states with isotonic fluids such as 0.9% sodium chloride; and treatment of cerebral herniation with head elevation, mannitol, hypertonic sodium chlorid fluids, steroids and hyperventilation. Immediately treatable causes are hypoglycemia, meningitis/encephalitis, opioid overdose and status epilepticus. Exclusion of rapidly progressive intracranial lesions almost always requires referral to the tertiary centre with head CT-scan facilities. Finally, an extensive etiology search of the stable coma is performed by looking for disease or trauma of the brain, for metabolic causes, for intoxications and for cardiopulmonary problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of cyclosporine A during the development phase of adjuvant arthritis was studied in 40 female rats. Five groups of eight animals each received oral cyclosporine, 2.5, 5, 10, 20, or 30 mg/kg daily for 30 days. Also, eight normal and eight diseased rats served as placebo controls. At the time of inoculation of the adjuvant suspension on day 0, measurement of disease parameters (paw swelling and vertebral density) was started concomitantly with beginning of therapy. On completion of the study, the animals were killed, and after measurement of total skeletal and segmental (hind legs and caudal spine plus two caudal vertebrae) calcium, the two assessed vertebrae and both femoral condyles were removed for histomorphometric evaluation (vertebrae) and for estimation of glycosaminoglycan (GAG) content of cartilage. Blood for osteocalcin determinations also was taken at term from control and untreated arthritic rats and from animals that had received 10 mg/kg cyclosporine. Treatment with 2.5 mg/kg was ineffective, but doses between 5 and 20 mg/kg prevented the development of articular and osseous lesions. The 20 mg/kg dose showed no better effect than 10 mg/kg. This was shown by the absence of inflammation and the presence of normal condylar GAG and total mineral content in the areas screened. Untreated animals showed marked reductions in all of these parameters. The 30 mg/kg dose was effective in blocking the GAG loss, but significant reductions in bone density and trabecular volume were seen. There was a close correlation between GAG and bone density values, suggesting a common causal relationship. Circulating osteocalcin was significantly elevated in the untreated animals with adjuvant arthritis.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND CONTEXT Proteolytic enzyme digestion of the intervertebral disc (IVD) offers a method to simulate a condition of disc degeneration for the study of cell-scaffold constructs in the degenerated disc. PURPOSE To characterize an in vitro disc degeneration model (DDM) of different severities of glycosaminoglycans (GAG) and water loss by using papain, and to determine the initial response of the human mesenchymal stem cells (MSCs) introduced into this DDM. STUDY DESIGN Disc degeneration model of a bovine disc explant with an end plate was induced by the injection of papain at various concentrations. Labeled MSCs were later introduced in this model. METHODS Phosphate-buffered saline (PBS control) or papain in various concentrations (3, 15, 30, 60, and 150 U/mL) were injected into the bovine caudal IVD explants. Ten days after the injection, GAG content of the discs was evaluated by dimethylmethylene blue assay and cell viability was determined by live/dead staining together with confocal microscopy. Overall matrix composition was evaluated by histology, and water content was visualized by magnetic resonance imaging. Compressive and torsional stiffness of the DDM were also recorded. In the second part, MSCs were labeled with a fluorescence cell membrane tracker and injected into the nucleus of the DDM or a PBS control. Mesenchymal stem cell viability and distribution were evaluated by confocal microscopy. RESULTS A large drop of GAG and water content of the bovine disc were obtained by injecting >30 U/mL papain. Magnetic resonance imaging showed Grade II, III, and IV disc degeneration by injecting 30, 60, and 150 U/mL papain. A cavity in the center of the disc could facilitate later injection of the nucleus pulposus tissue engineering construct while retaining an intact annulus fibrosus. The remaining disc cell viability was not affected. Mesenchymal stem cells injected into the protease-treated DDM disc showed significantly higher cell viability than when injected into the PBS-injected control disc. CONCLUSIONS By varying the concentration of papain for injection, an increasing amount of GAG and water loss could be induced to simulate the different severities of disc degeneration. MSC suspension introduced into the disc has a very low short-term survival. However, it should be clear that this bovine IVD DDM does not reflect a clinical situation but offers exciting possibilities to test novel tissue engineering protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Einleitung: Bandscheiben wirken als Schockabsorbierer in der Wirbelsäule und auf diese wirken meistens komplexe Kräfte, zusammengesetzt aus Kompression, Torsion und Flexion. Die biomechanishe Umgebung einer Bandscheibe ist denn auch geprägt von komplexen Belastungen. Die Forschung über die in vitro Bandscheibenbiologie hat sich bisher um die axiale Kompression konzentriert, wobei die Bedeutung von Torsion und insbesondere dem Zusammenspiel von Kompression und Torsion (="Twisting") praktisch noch nie untersucht wurde an lebenden Organkultur-Explantaten. Wir präsentieren neue mechanobiologische Daten über die Überlebenswahrscheinlichkeit von Bandscheibenzellen kultiviert in einem neuartigen, kompakten Design eines bi-axialen Bioreaktors, um die Bedeutung von Kompression und Torsion zu verstehen. Material/Methode: Bovine Schwanzbandscheiben mit den Endplatten wurden isoliert wie bereits beschrieben [2] und mechanische Belastung wurde angewendet mit einem 2 DoF Bioreaktor für 14 Tage [3]. Die Bandscheiben wurden in verschiedene Belastungsgruppen eingeteilt: 1) Keine Belastung (NL), 2) zyklische Kompression (CC) [8h: axiale Kompression mit 0.6 ± 0.2 MPa, 0.2 Hz], 3) zyklische Torsion (CT) [8h: ± 2° torsion, 0.2 Hz, 0.2 MPa compression], 4) zyklische Kompression und Torsion (CCT) [8h: 0.6 ± 0.2 MPa, 0.2 Hz & ± 2° torsion, 0.2 Hz]. Das Bandscheibengewebe wurde mit LIVE/DEAD gefärbt und miteinem konfokalen Mikroskop visualisiert um die Überlebensrate zu bestimmen. Zell Apoptosis wurde quantifiziert mit einem Caspase 3/7 Kit normalisiert zum totalen Proteingehalt (Bradford). Relative Gen-Expression von wichtigen Genen für die Bandscheibe wurde bestimmt von anabolischen, katabolischen und inflammatorischen Genen mittels real-time RT-PCR. Die Morphologie der Bandscheibenzellen wurde mittels Histologie bestimmt. Ergebnisse: Die Resultate zeigten einen starken Abfall der Zellüberlebenswahrscheinlichkeit im Zentrum der Bandscheiben, dem Nulceus Pulposus (NP), i.e. 10%, in der Gruppe mit CCT. Hingegen die Überlebenswahrscheinlichkeit im Annulus fibrosus (AF) war stabilisiert bei über 60% im NP und im AF in allen anderen Gruppen (Fig 1). Apoptotische Aktivität war statistisch signifikant erhöht in der CC-Gruppe, aber nicht in der CCT-Gruppe, was die Vermutung nahe legt, dass der erhöhte Zellverlust im NP nicht mit Apoptose sondern mit Nekrose erklärt werden kann. Die Gen Expression der anabolischen Gene COL1, COL2 und Biglycan war signifikant erhöht im AF in der CCT Gruppe, ebenfalls waren Remodeling-Gene angeschaltet wie ADAMTS4 und MMP-13 in der CCT Gruppe (Fig. 2). Der Glykosaminoglykan (GAG) Gehalt war generell im AF erhöht in den Gruppen unter mechanischer Belastung, jedoch nicht statistisch signifikant. Schlussfolgerung: Zyklische Torsion kombiniert mit zyklischer Kompression waren in dieser Studie erfolgreich und nach unserem besten Wissen zum ersten Mal an Bandscheibenexplantaten in einer 14- tägigen Organkultur angewendet worden in einem dafür speziell konzipierten Bioreaktor. Die Resultezeigten überraschend einen negativen Effekt bei physiologischen Parametern, was die Belastung (0.6MPa ± 0.2MPa) und die Torsion (± 2°) angeht. Dieser negative Effekt des "Twistings" auf die Überlebenswahrscheinlichkeit der Zellen war jedoch nur regional im NP von Bedeutung, wohingegen im AF keine Effekte zu detektieren waren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ɛ)caprolactone scaffolds have been electrospun directly into an auricular shaped conductive mould. Bovine chondrocytes were harvested from articular cartilage and seeded onto 16 of the produced scaffolds, which received either an ethanol (group A) or a plasma treatment (group B) for sterilisation before seeding. The seeded scaffolds were cultured for 3 weeks in vitro and analysed with regard to total DNA and GAG content as well as the expression of AGG, COL1, COL2, MMP3 and MMP13. Rapid cell proliferation and GAG accumulation was observed until week 2. However, total DNA and GAG content decreased again in week 3. qPCR data shows a slight increase in the expression of anabolic genes and a slight decrease for the catabolic genes, with a significant difference between the groups A and B only for COL2 and MMP13.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One Arabian and 5 Hungarian half-bred horses were used to study the macroscopic and microscopic survival of autologous osteochondral grafts in the weight-bearing surface of the medial femoral condyle (MFC). Grafts were harvested from the cranial surface of the medial femoral trochlea (MFT) under arthroscopic control. Three of them were transplanted into the weight-bearing surface of the contralateral MFC using an arthrotomy approach. Three months later this transplantation procedure was repeated on the opposite stifle joints in the same animals, but at that time transplantation was performed arthroscopically. Follow-up arthroscopy was carried out 12 months after the first operations, and biopsies were taken from both the recipient and the donor sites for histological examination. During follow-up arthroscopy, the transplanted areas looked congruent and smooth. Microscopically, the characteristics of hyaline cartilage were present in 5 out of the 10 biopsies examined; however, in the other half of biopsies glycosaminoglycan (GAG) loss and change in the architecture of the transplanted cartilage was observed. In a 16-year-old horse, all grafts broke during harvesting, and thus transplantation was not performed. No radiological signs of osteoarthritic changes were detected 9 to 12 months after the operations in the donor and recipient joints. Clinically, no lameness or effusion was present three months after the transplantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of the human immunodeficiency virus (HIV) and some of its components have been difficult to study in three-dimensions (3D) primarily because of their intrinsic structural variability. Recent advances in cryoelectron tomography (cryo-ET) have provided a new approach for determining the 3D structures of the intact virus, the HIV capsid, and the envelope glycoproteins located on the viral surface. A number of cryo-ET procedures related to specimen preservation, data collection, and image processing are presented in this chapter. The techniques described herein are well suited for determining the ultrastructure of bacterial and viral pathogens and their associated molecular machines in situ at nanometer resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MuSVts110 is a conditionally defective mutant of Moloney murine sarcoma virus which undergoes a novel tmperature-dependent splice event at growth temperatures of 33$\sp\circ$C or lower. Relative to wild-type MuSV-124, MuSVts110 contains a 1487 base deletion spanning from the 3$\sp\prime$ end of the p30 gag coding region to just downstream of the first v-mos initiation codon. As a result, the gag and mos genes are fused out of frame and no v-mos protein is expressed. However, upon a shift to 33$\sp\circ$C or lower, a splice event occurs which removes 431 bases, realigns the gag and mos genes, and allows read-through translation of a P85gag-mos transforming protein. Interestingly, while the cryptic splice sites utilized in MuSVts110 are present and unaltered in MuSV-124, they are never used. Due to the 1487 base deletion, the MuSV-124 intron was reduced from 1919 to 431 bases suggesting that intron size might be involved in the activation of these cryptic splice sites in MuSVts110. Since the splicing phenotype of the MuSVts110 equivalent (TS32 DNA) which contains the identical 1487 base deletion introduced into otherwise wild-type MuSV-124 DNA, was indistinguishable from authentic MuSVts110, it was concluded that this deletion alone is responsible for activation of the cryptic splice sites used in MuSVts110. These results also confirmed that thermodependent splicing is an intrinsic property of the viral RNA and not due to some cellular defect. Furthermore, analysis of gag gene deletion and frameshift MuSVts110 mutants demonstrated that viral gag gene proteins do not play a role in regulation of MuSVts110 splicing. Instead, cis-acting viral sequences appear to mediate regulation of the splice event.^ Our initial observation that truncation of the MuSVts110 transcript, leaving only residual amounts of the flanking exon sequences, completely abolished splicing activity argued that exon sequences might participate in the regulation of the splice event.^ Analysis of exon sequence involvement has also identified cis-acting sequences important in the thermodependence of the splice event. Data suggest that regulation of the MuSVts110 splice event involves multiple interactions between specific intron and exon sequences and spliceosome components which together limit splicing activity to temperatures of 33$\sp\circ$C or lower while simultaneously restricting splicing to a maximum of 50% efficiency. (Abstract shortened with permission of author.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^