904 resultados para frame beam
Resumo:
We propose to evaluate automatic three-dimensional gray-value rigid registration (RR) methods for prostate localization on cone-beam computed tomography (CBCT) scans. In total, 103 CBCT scans of 9 prostate patients have been analyzed. Each one was registered to the planning CT scan using different methods: (a) global RR, (b) pelvis bone structure RR, (c) bone RR refined by local soft-tissue RR using the CT clinical target volume (CTV) expanded with a 1, 3, 5, 8, 10, 12, 15 or 20-mm margin. To evaluate results, a radiation oncologist was asked to manually delineate the CTV on the CBCT scans. The Dice coefficients between each automatic CBCT segmentation - derived from the transformation of the manual CT segmentation - and the manual CBCT segmentation were calculated. Global or bone CT/CBCT RR has been shown to yield insufficient results in average. Local RR with an 8-mm margin around the CTV after bone RR was found to be the best candidate for systematically significantly improving prostate localization.
Resumo:
The Hi·Art II Helical TomoTherapy (HT) unit is equipped with a built-in onboard MVCT detector used for patient imaging and beam monitoring. Our aim was to study the detector stability for treatment beam measurements. We studied the MVCT detector response with the 6 MV photon beam over time, throughout short-term (during an irradiation) and long-term (two times 50 days) periods. Our results show a coefficient of variation ≤ 1% for detector chambers inside the beam (excluding beam gradients) for short- and long-term response of the MVCT detector. Larger variations were observed in beam gradients and an influence of the X-ray target where degradation was found. The results assume that an 'air scan' procedure is performed daily to recalibrate the detector with the imaging beam. On short term, the detector response stability is comparable to other devices. Long-term measure- ments during two 50-day periods show a good reproducibility.
Resumo:
This report describes the measurement of dynamic (live load) deflections in a 240' x 30' three span continuous prestressed steel bridge, skewed 30 degrees. The design assumptions and prestressing procedure are described briefly, and the instrumentation and loading are discussed. The actual deflections are presented in tabular form, and the deflections due to the design live load are calculated. The maximum deflections are presented as a ratio of the span length, and the further use of prestressed steel beams is recommended.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
The inverse scattering problem concerning the determination of the joint time-delayDoppler-scale reflectivity density characterizing continuous target environments is addressed by recourse to the generalized frame theory. A reconstruction formula,involving the echoes of a frame of outgoing signals and its corresponding reciprocalframe, is developed. A ‘‘realistic’’ situation with respect to the transmission ofa finite number of signals is further considered. In such a case, our reconstruction formula is shown to yield the orthogonal projection of the reflectivity density onto a subspace generated by the transmitted signals.
Resumo:
In this paper, the problem of frame-level symboltiming acquisition for UWB signals is addressed. The main goalis the derivation of a frame-level timing estimator which does notrequire any prior knowledge of neither the transmitted symbolsnor the received template waveform. The independence withrespect to the received waveform is of special interest in UWBcommunication systems, where a fast and accurate estimation ofthe end-to-end channel response is a challenging and computationallydemanding task. The proposed estimator is derived under theunconditional maximum likelihood criterion, and because of thelow power of UWB signals, the low-SNR assumption is adopted. Asa result, an optimal frame-level timing estimator is derived whichoutperforms existing acquisition methods in low-SNR scenarios.
Resumo:
The thin disk and fiber lasers are new solid-state laser technologies that offer a combinationof high beam quality and a wavelength that is easily absorbed by metal surfacesand are expected to challenge the CO2 and Nd:YAG lasers in cutting of metals ofthick sections (thickness greater than 2mm). This thesis studied the potential of the disk and fiber lasers for cutting applications and the benefits of their better beam quality. The literature review covered the principles of the disk laser, high power fiber laser, CO2 laser and Nd:YAG laser as well as the principle of laser cutting. The cutting experiments were made with thedisk, fiber and CO2 lasers using nitrogen as an assist gas. The test material was austenitic stainless steel of sheet thickness 1.3mm, 2.3mm, 4.3mm and 6.2mm for the disk and fiber laser cutting experiments and sheet thickness of 1.3mm, 1.85mm, 4.4mm and 6.4mm for the CO2 laser cutting experiments. The experiments focused on the maximum cutting speeds with appropriate cut quality. Kerf width, cutedge perpendicularity and surface roughness were the cut characteristics used to analyze the cut quality. Attempts were made to draw conclusions on the influence of high beam quality on the cutting speed and cut quality. The cutting speeds were enormous for the disk and fiber laser cutting experiments with the 1.3mm and 2.3mm sheet thickness and the cut quality was good. The disk and fiber laser cutting speeds were lower at 4.3mm and 6.2mm sheet thickness but there was still a considerable percentage increase in cutting speeds compared to the CO2 laser cutting speeds at similar sheet thickness. However, the cut quality for 6.2mm thickness was not very good for the disk and fiber laser cutting experiments but could probably be improved by proper selection of cutting parameters.
Resumo:
In this paper, a new two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation is proposed. The nonlinear elastic forces of the beam element are obtained using a continuum mechanics approach without employing a local element coordinate system. In this study, linear polynomials are used to interpolate both the transverse and longitudinal components of the displacement. This is different from other absolute nodal-coordinate-based beam elements where cubic polynomials are used in the longitudinal direction. The accompanying defects of the phenomenon known as shear locking are avoided through the adoption of selective integration within the numerical integration method. The proposed element is verified using several numerical examples, and the results are compared to analytical solutions and the results for an existing shear deformable beam element. It is shown that by using the proposed element, accurate linear and nonlinear static deformations, as well as realistic dynamic behavior, can be achieved with a smaller computational effort than by using existing shear deformable two-dimensional beam elements.
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
Resumo:
The geometric characterisation of tree orchards is a high-precision activity comprising the accurate measurement and knowledge of the geometry and structure of the trees. Different types of sensors can be used to perform this characterisation. In this work a terrestrial LIDAR sensor (SICK LMS200) whose emission source was a 905-nm pulsed laser diode was used. Given the known dimensions of the laser beam cross-section (with diameters ranging from 12 mm at the point of emission to 47.2 mm at a distance of 8 m), and the known dimensions of the elements that make up the crops under study (flowers, leaves, fruits, branches, trunks), it was anticipated that, for much of the time, the laser beam would only partially hit a foreground target/object, with the consequent problem of mixed pixels or edge effects. Understanding what happens in such situations was the principal objective of this work. With this in mind, a series of tests were set up to determine the geometry of the emitted beam and to determine the response of the sensor to different beam blockage scenarios. The main conclusions that were drawn from the results obtained were: (i) in a partial beam blockage scenario, the distance value given by the sensor depends more on the blocked radiant power than on the blocked surface area; (ii) there is an area that influences the measurements obtained that is dependent on the percentage of blockage and which ranges from 1.5 to 2.5 m with respect to the foreground target/object. If the laser beam impacts on a second target/object located within this range, this will affect the measurement given by the sensor. To interpret the information obtained from the point clouds provided by the LIDAR sensors, such as the volume occupied and the enclosing area, it is necessary to know the resolution and the process for obtaining this mesh of points and also to be aware of the problem associated with mixed pixels.
Resumo:
Focused ion beam milling is a processing technology which allows flexible direct writing of nanometer scale features efficiently substituting electron beam lithography. No mask need results in ability for patterns writing even on fragile micromechanical devices. In this work we studied the abilities of the tool for fabrication of diffraction grating couplers in silicon nitride waveguides. The gratings were fabricated on a chip with extra fragile cantilevers of sub micron thickness. Optical characterization of the couplers was done using excitation of the waveguides in visible range by focused Gaussian beams of different waist sizes. Influence of Ga+ implantation on the device performance was studied.
Ultrastructure of intraocular melanocytic tumors and of proton beam irradiated intraocular melanomas
Resumo:
Työssä tarkastellaan kahta kaasuturbiinin imuilman sisäänottojärjestelmän kehitysmenetelmää, imuilman jäähdytystä ja sähköstaattista suodatusta. Imuilman jäähdytysmenetelmien tarkastelussa käytettiin kahta kaasuturbiinin tehonlisäystekniikoiden laskentatyökalua. Arviointi kohdistettiin Glanford Brigg Generating Station -voimalaitoksen kaasuturbiinityyppiin ja paikallisiin englantilaisiin ilmasto-olosuhteisiin. Tarkastelussa olivat kostutusjäähdytys ja overspray. Tuloksia vertailtiin keskenään ja näiden perusteella arvioitiin menetelmien vaikutuksia tehoon, hyötysuhteeseen sekä veden kulutukseen. Sähköstaattisen suodattimen prototyyppi oli rakennettu Briggin voimalaitokselle. Järjestelmää kehitetään kaupalliseksi tuotteeksi ja tätä varten kerättiin tekninen dokumentaatio kokonaisuudeksi, jota voitiin hyödyntää tuotteistusprosessissa. Imuilman jäähdyttämisellä voidaan saavuttaa merkittävä tehonlisäys ilmasto-olosuhteista riippuen. Menetelmällä voidaan myös tasata lämpötilan vuorokausi-vaihtelusta aiheutuvia tehoeroja. Sähköstaattisen suodattimen prototyyppi saavutti kehitysvaiheelle asetetut tavoitteet. Sähköstaattinen suodatus tarjoaa useita etuja perinteiseen mekaaniseen suodatukseen verrattuna.
Resumo:
Työssä kehitettiin päällystyskoneen runkojen FE-analysointia erityisesti vastelaskennan kannalta, joskin myös ominaistaajuuslaskennan tarkentamiseksi esitettiin parannuksia. Työssä rajoitutaan harmonisten telaherätteiden aiheuttamien vasteiden analysointiin. . Työssä käsitellään värähtelyjen teoriaa ja tarkastellaan Abaqus-ohjelmiston (versio 5.8) laskentamenetelmiä vakiotilan värähtelyvasteen laskemiseksi. FEM-mallin rakenteeseen liittyen käsitellään perustuksien ja maaperän, konepalkin ja telaherätteiden mallintamista ja mallinnuksen laajuutta. Telaherätteitä käsitellään yksittäisen telan ja telojen samanvaiheisuuden kannalta. Samanvaiheisuutta tutkitaan työssä kehitetyllä summafunktiolla. Värähtelyjen mittaukseen FEM-mallien verifioimiseksi esitetään parannuksia. Nykyinen mallinnustapa käsitellään lyhyesti. Parannusehdotuksia kokeiltiin mallintamalla Rauma 400-päällystyskone ja vertaamalla tuloksia mitattuihin. Laskennan tulokset vastasivat vaihtelevasti mittaustuloksia, mittaustulosten puutteellisuus vaikeutti vertailua. Tulosten perusteella herätetiedon parantaminen on perusteltua ja mallin laajennus lisää todenmukaisuutta. Maaperän huomiointi vaikuttaa ennen kaikkea ominaistaajuuksiin ja muotoihin ja suora ratkaisutapa on käyttökelpoinen vasteen laskentamenetelmä otettaessa maaperä huomioon.