971 resultados para fracture healing, CYR61, vascularization, chondrogenesis, fixation stability
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Anisotropic damage distribution and evolution have a profound effect on borehole stress concentrations. Damage evolution is an irreversible process that is not adequately described within classical equilibrium thermodynamics. Therefore, we propose a constitutive model, based on non-equilibrium thermodynamics, that accounts for anisotropic damage distribution, anisotropic damage threshold and anisotropic damage evolution. We implemented this constitutive model numerically, using the finite element method, to calculate stress–strain curves and borehole stresses. The resulting stress–strain curves are distinctively different from linear elastic-brittle and linear elastic-ideal plastic constitutive models and realistically model experimental responses of brittle rocks. We show that the onset of damage evolution leads to an inhomogeneous redistribution of material properties and stresses along the borehole wall. The classical linear elastic-brittle approach to borehole stability analysis systematically overestimates the stress concentrations on the borehole wall, because dissipative strain-softening is underestimated. The proposed damage mechanics approach explicitly models dissipative behaviour and leads to non-conservative mud window estimations. Furthermore, anisotropic rocks with preferential planes of failure, like shales, can be addressed with our model.
Resumo:
Distal radius fractures stabilized by open reduction internal fixation (ORIF) have become increasingly common. There is currently no consensus on the optimal time to commence range of motion (ROM) exercises post-ORIF. A retrospective cohort review was conducted over a five-year period to compare wrist and forearm range of motion outcomes and number of therapy sessions between patients who commenced active ROM exercises within the first seven days and from day eight onward following ORIF of distal radius fractures. One hundred and twenty-one patient cases were identified. Clinical data, active ROM at initial and discharge therapy assessments, fracture type, surgical approaches, and number of therapy sessions attended were recorded. One hundred and seven (88.4%) cases had complete datasets. The early active ROM group (n = 37) commenced ROM a mean (SD) of 4.27 (1.8) days post-ORIF. The comparator group (n = 70) commenced ROM exercises 24.3 (13.6) days post-ORIF. No significant differences were identified between groups in ROM at initial or discharge assessments, or therapy sessions attended. The results from this study indicate that patients who commenced active ROM exercises an average of 24 days after surgery achieved comparable ROM outcomes with similar number of therapy sessions to those who commenced ROM exercises within the first week.
Resumo:
Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.
Resumo:
Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.
Resumo:
Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.
Resumo:
This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.
Resumo:
Objective To determine whether locally applied tobramycin influences the ability of recombinant human bone morphogenetic protein 2 (rhBMP-2) to heal a segmental defect in the rat femur. Methods The influence of tobramycin on the osteogenic differentiation of mesenchymal stem cells was first evaluated in vitro. For the subsequent, in vivo experiments, a 5-mm segmental defect was created in the right femur of each of 25 Sprague-Dawley rats and stabilized with an external fixator and four Kirschner wires. Rats were divided in four groups: empty control, tobramycin (11 mg)/absorbable collagen sponge, rhBMP-2 (11 μg)/absorbable collagen sponge, and rhBMP-2/absorbable collagen sponge with tobramycin. Bone healing was monitored by radiography at 3 and 8 weeks. Animals were euthanized at 8 weeks and the properties of the defect were compared with the intact contralateral femur. Bone formation in the defect region was assessed by dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing. Results Tobramycin exerted a dose-dependent inhibition of alkaline phosphatase induction and calcium deposition by mesenchymal stem cells cultured under osteogenic conditions. The inhibition was reversed in the presence of 500 ng/mL of rhBMP-2. Segmental defects in the rat femora failed to heal in the absence of rhBMP-2. Tobramycin exerted no inhibitory effects on the ability of rhBMP-2 to heal these defects and increased the bone area of the defects treated with rhBMP-2. Data obtained from all other parameters of healing, including dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing, were unaffected by tobramycin. Conclusions Although our in vitro results suggested that tobramycin inhibits the osteogenic differentiation of mesenchymal stem cells, this could be overcome by rhBMP-2. Tobramycin did not impair the ability of rhBMP-2 to heal critical-sized femoral defects in rats. Indeed, bone area was increased by nearly 20% in the rhBMP-2 group treated with tobramycin. This study shows that locally applied tobramycin can be used in conjunction with rhBMP-2 to enhance bone formation at fracture sites.
Resumo:
PURPOSE To review records of 330 patients who underwent surgery for femoral neck fractures with or without preoperative anticoagulation therapy. METHODS Medical records of 235 women and 95 men aged 48 to 103 years (mean, 81.6; standard deviation [SD], 13.1) who underwent surgery for femoral neck fractures with or without preoperative anticoagulation therapy were reviewed. 30 patients were on warfarin, 105 on aspirin, 28 on clopidogrel, and 167 were controls. The latter 3 groups were combined as the non-warfarin group and compared with the warfarin group. Hospital mortality, time from admission to surgery, length of hospital stay, return to theatre, and postoperative complications (wound infection, deep vein thrombosis, and pulmonary embolism) were assessed. RESULTS The warfarin and control groups were significantly younger than the clopidogrel and aspirin groups (80.8 vs. 80.0 vs. 84.2 vs. 83.7 years, respectively, p<0.05). 81% of the patients underwent surgery within 48 hours of admission. The overall mean time from admission to surgery was 1.8 days; it was longer in the warfarin than the aspirin, clopidogrel, and control groups (3.3 vs. 1.8 vs. 1.6 vs. 1.6 days, respectively, p<0.001). The mean length of hospital stay was 17.5 (SD, 9.6; range, 3-54) days. The overall hospital mortality was 3.9%; it was 6.7% in the warfarin group, 3.8% in the aspirin group, 3.6% in the clopidogrel group, and 3.6% in the control group (p=0.80). Four patients returned to theatre for surgery: one in the warfarin group for washout of a haematoma, 2 in the aspirin group for repositioning of a mal-fixation and for debridement of wound infection, and one in the control group for debridement of wound infection. The warfarin group did not differ significantly from non-warfarin group in terms of postoperative complication rate (6.7% vs. 2.7%, p=0.228) and the rate of return to theatre (3.3% vs. 1%, p=0.318). CONCLUSION It is safe to continue aspirin and clopidogrel prior to surgical treatment for femoral neck fracture. The risk of delaying surgery outweighs the peri-operative bleeding risk.
Resumo:
Use of socket prostheses Currently, for individuals with limb loss, the conventional method of attaching a prosthetic limb relies on a socket that fits over the residual limb. However, there are a number of issues concerning the use of a socket (e.g., blisters, irritation, and discomfort) that result in dissatisfaction with socket prostheses, and these lead ultimately a significant decrease in quality of life. Bone-anchored prosthesis Alternatively, the concept of attaching artificial limbs directly to the skeletal system has been developed (bone anchored prostheses), as it alleviates many of the issues surrounding the conventional socket interface.Bone anchored prostheses rely on two critical components: the implant, and the percutaneous abutment or adapter, which forms the connection for the external prosthetic system (Figure 1). To date, an implant that screws into the long bone of the residual limb has been the most common intervention. However, more recently, press-fit implants have been introduced and their use is increasing. Several other devices are currently at various stages of development, particularly in Europe and the United States. Benefits of bone-anchored prostheses Several key studies have demonstrated that bone-anchored prostheses have major clinical benefits when compared to socket prostheses (e.g., quality of life, prosthetic use, body image, hip range of motion, sitting comfort, ease of donning and doffing, osseoperception (proprioception), walking ability) and acceptable safety, in terms of implant stability and infection. Additionally, this method of attachment allows amputees to participate in a wide range of daily activities for a substantially longer duration. Overall, the system has demonstrated a significant enhancement to quality of life. Challenges of direct skeletal attachment However, due to the direct skeletal attachment, serious injury and damage can occur through excessive loading events such as during a fall (e.g., component damage, peri-prosthetic fracture, hip dislocation, and femoral head fracture). These incidents are costly (e.g., replacement of components) and could require further surgical interventions. Currently, these risks are limiting the acceptance of bone-anchored technology and the substantial improvement to quality of life that this treatment offers. An in-depth investigation into these risks highlighted a clear need to re-design and improve the componentry in the system (Figure 2), to improve the overall safety during excessive loading events. Aim and purposes The ultimate aim of this doctoral research is to improve the loading safety of bone-anchored prostheses, to reduce the incidence of injury and damage through the design of load restricting components, enabling individuals fitted with the system to partake in everyday activities, with increased security and self-assurance. The safety component will be designed to release or ‘fail’ external to the limb, in a way that protects the internal bone-implant interface, thus removing the need for restorative surgery and potential damage to the bone. This requires detailed knowledge of the loads typically experienced by the limb and an understanding of potential overload situations that might occur. Hence, a comprehensive review of the loading literature surrounding bone anchored prostheses will be conducted as part of this project, with the potential for additional experimental studies of the loads during normal activities to fill in gaps in the literature. This information will be pivotal in determining the specifications for the properties of the safety component, and the bone-implant system. The project will follow the Stanford Biodesign process for the development of the safety component.
Resumo:
Objectives Hematoma quality (especially the fibrin matrix) plays an important role in the bone healing process. Here, we investigated the effect of interleukin-1 beta (IL-1β) on fibrin clot formation from platelet-poor plasma (PPP). Methods Five-milliliter of rat whole-blood samples were collected from the hepatic portal vein. All blood samples were firstly standardized via a thrombelastograph (TEG), blood cell count, and the measurement of fibrinogen concentration. PPP was prepared by collecting the top two-fifths of the plasma after centrifugation under 400 × g for 10min at 20°C. The effects of IL-1β cytokines on artificial fibrin clot formation from PPP solutions were determined by scanning electronic microscopy (SEM), confocal microscopy (CM), turbidity, and clot lysis assays. Results The lag time for protofibril formation was markedly shortened in the IL-1β treatment groups (243.8 ± 76.85 in the 50 pg/mL of IL-1β and 97.5 ± 19.36 in the 500 pg/mL of IL-1β) compared to the control group without IL-1β (543.8 ± 205.8). Maximal turbidity was observed in the control group. IL-1β (500 pg/mL) treatment significantly decreased fiber diameters resulting in smaller pore sizes and increased density of the fibrin clot structure formed from PPP (P < 0.05). The clot lysis assay revealed that 500 pg/mL IL-1β induced a lower susceptibility to dissolution due to the formation of thinner and denser fibers. Conclusion IL-1β can significantly influence PPP fibrin clot structure, which may affect the early bone healing process.
Resumo:
Acute knee injury is a common event throughout life, and it is usually the result of a traffic accident, simple fall, or twisting injury. Over 90% of patients with acute knee injury undergo radiography. An overlooked fracture or delayed diagnosis can lead to poor patient outcome. The major aim of this thesis was retrospectively to study imaging of knee injury with a special focus on tibial plateau fractures in patients referred to a level-one trauma center. Multi-detector computed tomography (MDCT) findings of acute knee trauma were studied and compared to radiography, as well as whether non-contrast MDCT can detect cruciate ligaments with reasonable accuracy. The prevalence, type, and location of meniscal injuries in magnetic resonance imaging (MRI) were evaluated, particularly in order to assess the prevalence of unstable meniscal tears in acute knee trauma with tibial plateau fractures. The possibility to analyze with conventional MRI the signal appearance of menisci repaired with bioabsorbable arrows was also studied. The postoperative use of MDCT was studied in surgically treated tibial plateau fractures: to establish the frequency and indications of MDCT and to assess the common findings and their clinical impact in a level-one trauma hospital. This thesis focused on MDCT and MRI of knee injuries, and radiographs were analyzed when applica-ble. Radiography constitutes the basis for imaging acute knee injury, but MDCT can yield information beyond the capabilities of radiography. Especially in severely injured patients , sufficient radiographs are often difficult to obtain, and in those patients, radiography is unreliable to rule out fractures. MDCT detected intact cruciate ligaments with good specificity, accuracy, and negative predictive value, but the assessment of torn ligaments was unreliable. A total of 36% (14/39) patients with tibial plateau fracture had an unstable meniscal tear in MRI. When a meniscal tear is properly detected preoperatively, treatment can be combined with primary fracture fixation, thus avoiding another operation. The number of meniscal contusions was high. Awareness of the imaging features of this meniscal abnormality can help radiologists increase specificity by avoiding false-positive findings in meniscal tears. Postoperative menisci treated with bioabsorbable arrows showed no difference, among different signal intensities in MRI, among menisci between patients with operated or intact ACL. The highest incidence of menisci with an increased signal intensity extending to the meniscal surface was in patients whose surgery was within the previous 18 months. The results may indicate that a rather long time is necessary for menisci to heal completely after arrow repair. Whether the menisci with an increased signal intensity extending to the meniscal surface represent improper healing or re-tear, or whether this is just the earlier healing feature in the natural process remains unclear, and further prospective studies are needed to clarify this. Postoperative use of MDCT in tibial plateau fractures was rather infrequent even in this large trauma center, but when performed, it revealed clinically significant information, thus benefitting patients in regard to treatment.
Resumo:
Fractures and arthritic joint destruction are common in the hand. A reliable and stable fracture fixation can be achieved by metal implants, which however, become unnecessary or even harmful after consolidation. The silicone implant arthroplasty is the current method of choice for reconstruction of metacarpophalangeal joints in rheumatoid patients. However, the outcome tends to worsen with long-term follow-up and implant-related complications become frequent. To address these problems, bioabsorbable implants were designed for the hand area. Aims of the studies were: 1) to evaluate the biomechanical stabilities provided by self- reinforced (SR) bioabsorbable implants in a transverse and an oblique osteotomy of small tubular bones and to compare them with those provided by metal implants; 2) to evaluate the SR poly-L/DL-lactide 70/30 plate for osteosynthesis in a proof-of-principle type of experiment in three cases of hand injuries; and 3) to evaluate the poly-L/D-lactide (PLA) 96/4 joint scaffold, a composite joint implant with a supplementary intramedullary Polyactive® stem and Swanson silicone implant in an experimental small joint arthroplasty model. Methods used were: 1) 112 fresh frozen human cadaver and 160 pig metacarpal bones osteotomised transversally or obliquely, respectively, and tested ex vivo in three point bending and in torsion; 2) three patient cases of complex hand injuries; and 3) the fifth metacarpophalangeal joints reconstructed in 18 skeletally-mature minipigs and studied radiologically and histologically. The initial fixation stabilities provided by bioabsorbable implants in the tubular bones of the hand were comparable with currently-employed metal fixation techniques, and were sufficient for fracture stabilisation in three preliminary cases in the hand. However, in torsion the stabilities provided by bioabsorbable implants were lower than that provided by metal counterparts. The bioabsorbable plate enhanced the bending stability for the bioabsorbable fixation construct. PLA 96/4 joint scaffolds demonstrated good biocompatibility and enabled fibrous tissue in-growth in situ. After scaffold degradation, a functional, stable pseudarthrosis with dense fibrous connective tissue was formed. However, the supplementary Polyactive® stem caused a deleterious tissue reaction and therefore the stem can not be applied to the composite joint implant. The bioabsorbable implants have potential for use in clinical hand surgery, but have to await validation in clinical patient series and controlled trials.
Resumo:
Although the first procedure in a seeing human eye using excimer laser was reported in 1988 (McDonald et al. 1989, O'Connor et al. 2006) just three studies (Kymionis et al. 2007, O'Connor et al. 2006, Rajan et al. 2004) with a follow-up over ten years had been published when this thesis was started. The present thesis aims to investigate 1) the long-term outcomes of excimer laser refractive surgery performed for myopia and/or astigmatism by photorefractive keratectomy (PRK) and laser-in situ- keratomileusis (LASIK), 2) the possible differences in postoperative outcomes and complications when moderate-to-high astigmatism is treated with PRK or LASIK, 3) the presence of irregular astigmatism that depend exclusively on the corneal epithelium, and 4) the role of corneal nerve recovery in corneal wound healing in PRK enhancement. Our results revealed that in long-term the number of eyes that achieved uncorrected visual acuity (UCVA)≤0.0 and ≤0.5 (logMAR) was higher after PRK than after LASIK. Postoperative stability was slightly better after PRK than after LASIK. In LASIK treated eyes the incidence of myopic regression was more pronounced when the intended correction was over >6.0 D and in patients aged <30 years.Yet the intended corrections in our study were higher for LASIK than for PRK eyes. No differences were found in percentages of eyes with best corrected visual acuity (BCVA) or loss of two or more lines of visual acuity between PRK and LASIK in the long-term. The postoperative long-term outcomes of PRK with two different delivery systems broad beam and scanning laser were compared and revealed no differences. Postoperative outcomes of moderate-to-high astigmatism yielded better results in terms of UCVA and less compromise or loss of two more lines of BCVA after LASIK that after PRK.Similar stability for both procedures was revealed. Vector analysis showed that LASIK outcomes tended to be more accurate than PRK outcomes, yet no statistically differences were found. Irregular astigmatism secondary to recurrent corneal erosion due to map-dot-fingerprint was successfully treated with phototherapeutic keratectomy (PTK). Preoperative videokeratographies (VK) showed irregular astigmatism. However, postoperatively, all eyes showed a regular pattern. No correlation was found between pre- and postoperative VK patterns. Postoperative outcomes of late PRK in eyes originally subjected to LASIK showed that all (7/7) eyes achieved UCVA ≤0.5 at last follow-up (range 3 — 11 months), and no eye lost lines of BCVA. Postoperatively all eyes developed and initial mild haze (0.5 — 1) into the first month. Yet, at last follow-up 5/7 eyes showed a haze of 0.5 and this was no longer evident in 2/7 eyes. Based on these results, we demonstrated that the long-term outcomes after PRK and LASIK were safe and efficient, with similar stability for both procedures. The PRK outcomes were similar when treated by broad-beam or scanning slit laser. LASIK was better than PRK to correct moderate-to-high astigmatism, yet both procedures showed a tendency of undercorrection. Irregular astigmatism was proven to be able to depend exclusively from the corneal epithelium. If this kind of astigmatism is present in the cornea and a customized PRK/LASIK correction is done based on wavefront measurements an irregular astigmatism may be produced rather than treated. Corneal sensory nerve recovery should have an important role in the modulation of the corneal wound healing and post-operative anterior stromal scarring. PRK enhancement may be an option in eyes with previous LASIK after a sufficient time interval that in at least 2 years.
Resumo:
Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.