201 resultados para flavonol glycoside


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88–100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GTP cyclohydrolase I of Escherichia coli is a torus-shaped homodecamer with D5 symmetry and catalyzes a complex ring expansion reaction conducive to the formation of dihydroneopterin triphosphate from GTP. The x-ray structure of a complex of the enzyme with the substrate analog, dGTP, bound at the active site was determined at a resolution of 3 A. In the decamer, 10 equivalent active sites are present, each of which contains a 10-A deep pocket formed by surface areas of 3 adjacent subunits. The substrate forms a complex hydrogen bond network with the protein. Active site residues were modified by site-directed mutagenesis, and enzyme activities of the mutant proteins were measured. On this basis, a mechanism of the enzyme-catalyzed reaction is proposed. Cleavage of the imidazole ring is initiated by protonation of N7 by His-179 followed by the attack of water at C8 of the purine system. Cystine Cys-110 Cys-181 may be involved in this reaction step. Opening of the imidazole ring may be in concert with cleavage of the furanose ring to generate a Schiff's base from the glycoside. The gamma-phosphate of GTP may be involved in the subsequent Amadori rearrangement of the carbohydrate side chain by activating the hydroxyl group of Ser-135.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability to colonize endophytically roots of economically-important crop plants, thereby promoting their growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ∼41 Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing barley roots. Functional annotation of these genes showed that hydrolytic enzymes and transporters are expressed during endophytism. This structural and functional analysis of the P. chlamydosporia genome provides a starting point for understanding the molecular mechanisms involved in the multitrophic lifestyle of this fungus. The genomic information provided here should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of plant-parasitic nematodes and as a plant growth-promoting organism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of a 4-year project to study phenolic compounds in tea shoots over the growing seasons and during black tea processing in Australia, an HPLC method was developed and optimised for the identification and quantification of phenolic compounds, mainly flavanols and phenolic acids, in fresh tea shoots. Methanol proved to be the most suitable solvent for extracting the phenolic compounds, compared with chloroform, ethyl acetate and water. Immediate analysis, by HPLC, of the methanol extract showed higher separation efficiency than analyses after being dried and redissolved. This method exhibited good repeatability (CV 3-9%) and recovery rate (88-116%). Epigallocatechin gallate alone constituted up to 115 mg/g, on a dry basis, in the single sample of Australian fresh tea shoots examined. Four catechins (catechin, gallocatechin, epicatechin and epigallocatechin) and six catechin gallates (epigallocatechin gallate, catechin gallate, epicatechin gallate, gallocatechin gallate, epicatechin digallate and epigallocatechin digallate) have been identified and quantified by this HPLC method. In addition, two major tea alkaloids, caffeine and theobromine, have been quantified, while five flavonol glycosides and six phenolic acids, including quinic acids and esters, were identified and quantified. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two major steroidal saponins from the roots of Asparagus racemosus were isolated by RP-HPLC and their structure determined by extensive NMR studies. Their structures did not match those reported previously for shatavarins. I and IV and were found to be 3-O-{[beta-D-glueopyranosy](1 -> 2)][alpha-L-rhamnopyranosyl(1 -> 4)]-beta-D-glucopyranosyl}-26-O-(P-D-glu(opyranosyl)-(25S)5 beta-furostan-3p,22 alpha,26-triol and 3-O-{[beta-D-glueopyranosyl(1 -> 2)][alpha-L-rhamnopyranosyl(1 -> 4)]-beta-D-glucopyrariosyl}-(25S)-5 beta-spirostan-3 beta-ol. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant sucrose transporters (SUTs) are members of the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) that is part of the major facilitator superfamily (MFS). All plant SUTs characterized to date function as proton-coupled symporters and catalyze the cellular uptake of sucrose. SUTs are involved in loading sucrose into the phloem and sink tissues, such as seeds, roots and flowers. Because monocots are agriculturally important, SUTs from cereals have been the focus of recent research. Here we present a functional analysis of the SUT ShSUT1 from sugarcane, an important crop species grown for its ability to accumulate high amounts of sucrose in the stem. ShSUT1 was previously shown to be expressed in maturing stems and plays an important role in the accumulation of sucrose in this tissue. Using two-electrode voltage clamping in Xenopus oocytes expressing ShSUT1, we found that ShSUT1 is highly selective for sucrose, but has a relatively low affinity for sucrose (K-0.5 = 8.26 mM at pH 5.6 and a membrane potential of -137 mV). We also found that the sucrose analog sucralose (4,1 ',6 '-trichloro-4,1 ',6 '-trideoxygalactosucrose) is a competitive inhibitor of ShSUT1 with an inhibition coefficient (K-i) of 16.5 mM. The presented data contribute to our understanding of sucrose transport in plants in general and in monocots in particular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L-1 (5,7-dimethyl-3-(2',3',5'-tri-O-benzoyl-beta-D-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L-2 (5,7-dimethyl-3-beta-D-ribofuranosyl-s-triazolo [4,3-a]pyrimidine) and L-3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L-1)](NO3)(2), (Pd(bpy)(L-1)](NO3)(2), cis-Pd(L-3)(2)Cl-2, [Pd-2(L-3)(2)Cl-4]center dot H2O, cis-Pd(L-2)(2)Cl-2 and [Pt-3(L-1)(2)Cl-6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd-2(L-3)(2)Cl-4]center dot H2O complex was established by Xray crystallography. The two L-3 ligands are found in a head to tail orientation, with a (PdPd)-Pd-... distance of 3.1254(17) angstrom.L-1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L-2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L-2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Waltheria genus belonging to the Sterculiaceae family, it is reported as a prolific source of flavonoids and quinolone alkaloids, substances of great interest due to several associated biological activities. This work describes a novel phytochemical study from Waltheria ferruginea, aiming to contribute to the chemical knowledge of this specie and the isolation of substances with biological potential. For the phytochemical study were used chromatography techniques on silica gel and molecular exclusion in Sephadex LH-20.The structural elucidation of the isolated compounds was performed through spectrometric techniques 1H and 13C NMR, including uni and bidimensional pulse sequences, and comparison with data from literature. Five substances were isolated, namely: the flavonids kaempferol-3-O-β-(6''-cumaroil)-glucopyranoside (F1) and kaempferol -3 -O- β - glucopyranoside (F2), both analyzes with pharmacological properties, the flavonol quercetin-3-O-β-glucopyranoside (F3 ) pure and in the epimeric mixture α (F3') and (F3), the terpenegeranyl - geranyl (G1) and the 12-hydroxi-octadecanoic acid, all no previous reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fungal species Guignardia citricarpa is an important pathogen in citriculture. Members of the fungal genus Trichoderma are recognized as biocontrol agents but studies on the interactions between both fungi are scarce. This study aimed to identify extracellular proteins secreted by Trichoderma atroviride T17 that are related to the control of G. citricarpa. Two-dimensional gel electrophoresis (2D) was used to study the patterns of proteins secreted by T. atroviride T17 in medium containing glucose (control) and in medium containing G. citricarpa GC3 inactivated mycelium. We identified 59 of the 116 spots differentially expressed (50.86%) by LC–MS/MS. Of these, we highlight the presence of glycoside hydrolases (CAZy families 3, 43, 54, 76 and 93), chitinase, mutanase, a-1,3-glucanase, a-1,2-mannosidase, carboxylic hydrolase ester, carbohydrate-binding module family 13, glucan 1,3-b-glucosidase, a-galactosidase and Neutral protease 2. These proteins are related to mycoparasitism processes, stimuli and therefore to the biological control of pathogens. The results obtained are in agreement with reports describing an increase in the secretion of proteins related to mycoparasitism and biological control and a reduction in the secretion of proteins related to the metabolism of Trichoderma species grown in the presence of the pathogen. Moreover, these results are pioneer in understanding T. atroviride interaction with G. citricarpa. For the first time, we identified potential candidate proteins that may have a role in the antagonism mechanism of G. citricarpa by T. atroviride T17. Thus our results shed a light into the molecular mechanisms that T. atroviride use to control G. citricarpa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and ROS pathways to regulate root growth direction and rate in response to light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytochemical profiles and bioactivities of red, white and pink globe amaranth (Gomphrena haageana K., Gomphrena globosa var. albiflora and Gomphrena sp., respectively), much less studied than the purple species (G. globosa L.), were compared. The chemical characterization of the samples included the analysis of macronutrients and individual profiles of sugars, organic acids, fatty acids, tocopherols, and phenolic compounds. Their bioactivity was evaluated by determining the antioxidant and anti-inflammatory activities; the absence of cytotoxicity was also determined. Red and pink samples showed the highest sugar content. Otherwise, the white sample gave the highest level of organic acids, and together with the pink one showed the highest tocopherol and PUFA levels. Quercetin-3-O-rutinoside was the major flavonol in white and pink samples, whereas a tetrahydroxy-methylenedioxyflavone was the major compound in the red variety, which revealed a different phenolic profile. The pink globe amaranth hydromethanolic extract revealed the highest antioxidant activity, followed by those of red and white samples. The anti-inflammatory activity was more relevant in red and pink varieties. None of the samples presented toxicity in liver cells. Overall, these samples can be used in bioactive formulations against inflammatory processes and in free radical production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two C,O-diglycosylated compounds, the anthrone picramnioside F, and the oxanthrone mayoside C, were isolated from the stem bark of Picramnia teapensis, along with the previously reported anthraquinones, 1-O-beta -D- and 8-O-beta -D-glucopyranosyl emodin. The compounds were separated by recycling-HPLC, and their structures were determined on the basis of spectroscopic analysis. CD measurements were used to establish the absolute configuration of the anthrone and oxanthrone. The antifungal activity of 1-O-beta -D- and 8-O--D-glucopyranosyl emodin against Leucoagaricus gongilophorus was shown to be similar to that of the lignan sesamin. (C) 2000 Elsevier B.V. Ltd. All rights reserved.