915 resultados para fission yeast
Resumo:
A novel method has been developed to easily isolate the mutants with high lipid yield after irradiating oleaginous yeast cells with carbon ions of energy of 80 MeV/u. Pre-selection of the mutants after ion irradiation was performed with culture medium in which the concentration of cerulenin, a potent inhibitor of fatty acid synthetase, was at 8.96 mu mol/l. Afterwards, lipid concentration in the fermentation broth of the pre-selected colonies was estimated by the sulfo-phospho-vanillin reaction instead of the conventional methanol-chloroform extraction. Two mutants with high lipid yield have been successfully selected out by the combined method. This easy and simple method is much less time-consuming but very efficient in the mutant isolation, and it has demonstrated great potential on mutation breeding in oleaginous microorganism.
Resumo:
The basic process of an exotic decay mode namely P-delayed fission is simply introduced. The progress status of the study in the world is essentialized. The observation of P-delayed fission of Ac-228 is reported. The radium was radiochemically separated from natural thorium. Thin Ra sources in which Ac-228 was got through Ra-228 ->(beta-) Ac-228 were prepared for observing fission fragments from beta-delayed fission Ac-228. They exposed to the mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2) x 10(-12).
Resumo:
Radium was radiochemically separated from natural thorium. Thin Ra-228 ->beta Ac-228 sources were prepared and exposed to mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2)x10(-12).
Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain
Resumo:
To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration. Induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120 0 keV mu m(-1)) was investigated It was found that survival curves were exponential, and mutation curves were linear for all LET values The dependence of inactivation cross section on LET approached saturation near 120 0 keV mu m(-1) The imitation cross section saturated when LET was higher than 582 keV mu m(-1) Meanwhile, the highest RBEI for inactivation located at 120 0 key mu m(-1) and the highest RBEm for mutation was at 58.2 key mu m(-1) The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to Induce mutagenic lesions but too low to induce over kill effect in the yeast cells (C) 2010 Elsevier B V All rights reserved
Resumo:
The unified fission model (UFM) combining with the phenomenological assault frequency has been carried out to investigate the proton-radioactivity half-lives of spherical proton emitters. The results are in good agreement with the experimental data and other theoretical values, and newly observed spherical proton emitters have been analyzed. Finally, the effect of angular momentum transfer on half-life of proton emission has been discussed in detail and a formula can be used to describe this relationship.
Resumo:
The alpha decay constant is the product of the penetrability P and assault frequency nu(0) in the fission-like model. An effective assault frequency P-nu replacing the previous assault frequency nu(0) is introduced for improvement of a fission-like model named the generalized liquid drop model (GLDM) to describe the nuclear alpha decay process more accurately. Two analytical formulae are proposed for the effective assault frequency due to experimental data within the GLDM. The improved model can be used to give accurate calculations for alpha decay half-lives.
Resumo:
利用100MeV/u的12C6+离子束辐照酵母Saccharomyces cerevsiea YY,选育出一株高产突变菌株C03A,考察C03A发酵过程中不同温度、pH、糖汁浓度对发酵的影响。通过正交实验确定最佳发酵条件为:糖汁浓度24%、温度35℃、pH5.0。在10L发酵罐实验中,C03A发酵速率相对原始菌株高,36h发酵完全,比原始菌株缩短12h;发酵产酒率达到13.2%(V/V),比原始菌株高1.6%(V/V)。
Resumo:
Identifying protein-protein interactions is crucial for understanding cellular functions. Genomic data provides opportunities and challenges in identifying these interactions. We uncover the rules for predicting protein-protein interactions using a frequent pattern tree (FPT) approach modified to generate a minimum set of rules (mFPT), with rule attributes constructed from the interaction features of the yeast genomic data. The mFPT prediction accuracy is benchmarked against other commonly used methods such as Bayesian networks and logistic regressions under various statistical measures. Our study indicates that mFPT outranks other methods in predicting the protein-protein interactions for the database used. We predict a new protein-protein interaction complex whose biological function is related to premRNA splicing and new protein-protein interactions within existing complexes based on the rules generated.
Resumo:
We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as robustness ratio ( RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network. Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level. It may provide an optimal criterion for network wiring connections and design.
Resumo:
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved