984 resultados para fish stock
Resumo:
Tese de dout., Ciências do Mar, da Terra e do Ambiente (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012
Resumo:
1. Prochilodus lineatus (Prochilodontidae, Characiformes) is a migratory species of great economic importance both in fisheries and aquaculture that is found throughout the Jacui, Paraiba do Sul, Parana, Paraguay and Uruguay river basins in South America. Earlier population studies of P. lineatus in the rio Grande basin (Parana basin) indicated the existence of a single population; however, the range of this species has been fragmented by the construction of several dams. Such dams modified the environmental conditions and could have constrained the reproductive migration of P. lineatus, possibly leading to changes in the population genetic structure. 2. In order to evaluate how genetic diversity is allocated in the rio Grande basin, 141 specimens of P. lineatus from eight collection sites were analysed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with 15 restriction enzymes. 3. Forty-six haplotypes were detected, and 70% of them are restricted. The mean genetic variability indexes (h = 0.7721 and pi = 1.6%) were similar to those found in natural populations with a large effective size. Fst and Exact Test values indicated a lack of structuring among the samples, and the model of isolation by distance was tested and rejected. 4. The haplotype network indicated that this population of P. lineatus has been maintained as a single variable stock with some differences in the genetic composition (haplotypes) between samples. Indications of population expansion were detected, and this finding was supported by neutrality tests and mismatch distribution analyses. 5. The present study focused on regions between dams to serve as a parameter for further evaluations of genetic variability and the putative impact of dams and repopulation programmes in natural populations of P. lineatus. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The importance of genetic evaluations in aquaculture programmes has been increased significantly not only to improve effectiveness of hatchery production but also to maintain genetic diversity. In the present study, wild and captive populations of a commercially important neotropical freshwater fish, Brycon cephalus (Amazonian matrincha), were analyzed in order to evaluate the levels of genetic diversity in a breeding programme at a Brazilian research institute of tropical fish. Random Amplified Polymorphic DNA fingerprinting was used to access the genetic variability of a wild stock from the Amazon River and of three captive stocks that correspond to consecutive generations from the fishery culture. Although farmed stocks showed considerably lower genetic variation than the wild population, a significantly higher level of polymorphism was detected in the third hatchery generation. The results seem to reflect a common breeding practice on several hatchery fish programmes that use a small number of parents as broodstocks, obtaining reproductive success with few non-identified mating couples. The obtained data were useful for discussing suitable strategies for the genetic management and biodiversity conservation of this species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we describe the present status of the large migratory catfish fisheries in the Upper Amazon. We present biological information about the main species and we give strong evidence that the stock of piraiba (Brachyplatystoma filamentosum), the largest catfish in the Amazon Basin is probably over-exploited. In conclusion, we raise some hypotheses about the causes and prospects for the future.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Herein, we have developed molecular markers for nuclear genes to use in multiplex-PCR and PCR-RFLP, with the goal of characterising hybrid lines derived from crosses between pintado Pseudoplatystoma corruscans and cachara P. reticulatum. These markers, together with others described previously, were used to perform molecular identification analyses as genetic subsidies for Brazilian aquaculture. These analyses were performed due to the problems of high mortality in the offspring reported by the aquaculturist. From a total of 16 broodstock samples, 13 were genetically identified as hybrids; surprisingly, nine of these hybrids were found to be post-F1 lineages. These data show that the fertility of these animals can seriously affect the cultivated stocks, thus causing financial damage in this aquaculture system. The establishment of PCR-RFLP and multiplex-PCR as molecular techniques allows for both the correct management of these animals and the routine monitoring of production and trade of fish hybrids in aquaculture. Consequently, such tools will enable a sustainable development in the aquaculture industry. © 2012 Blackwell Publishing Ltd.
Resumo:
The acoupa weakfish (Cynoscion acoupa - Sciaenidae) is a marine species of croaker with estuarine-dependent behavior, found in the western Atlantic from Panama to Argentina. It is one of the most exploited food fish on the northern coast of Brazil. In this study, DNA sequences were determined from the entire control region (D-loop) of the mitochondrial genome of 297 individuals collected during seven different months between December 2003 and August 2005 on the northern coast of Brazil (Amapá and Pará). Genetic variability expressed by haplotype (h = 0,892) and nucleotide (p = 0,003) diversities were low compared to other heavily exploited marine fish species from the western Atlantic and eastern Asia. AMOVA depicted a lack of genetic structuring among the samples from different years, indicating the presence of a single stock of C. acoupa within the sample area. The possible reasons for the low levels of genetic diversity are discussed. These results demonstrate a need for the monitoring of C. acoupa harvesting and the preservation of the estuaries within its geographic range, considering that this large fish depends on estuarine ecosystems during part of its life cycle.
Photoperiod modulation of aggressive behavior is independent of androgens in a tropical cichlid fish
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Under the 1994 amendments to the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) are required to publish Stock Assessment Reports for all stocks of marine mammals within U.S. waters, to review new information every year for strategic stocks and every three years for non-strategic stocks, and to update the stock assessment reports when significant new information becomes available. This report presents stock assessments for 13 Pacific marine mammal stocks under NMFS jurisdiction, including 8 “strategic” stocks and 5 “non-strategic” stocks (see summary table). A new stock assessment for humpback whales in American Samoa waters is included in the Pacific reports for the first time. New or revised abundance estimates are available for 9 stocks, including Eastern North Pacific blue whales, American Samoa humpback whales, five U.S. west coast harbor porpoise stocks, the Hawaiian monk seal, and southern resident killer whales. A change in the abundance estimate of Eastern North Pacific blue whales reflects a recommendation from the Pacific Scientific Review Group to utilize mark-recapture estimates for this population, which provide a better estimate of total population size than the average of recent line-transect and mark-recapture estimates. The ‘Northern Oregon/Washington Coast Stock’ harbor porpoise stock assessment includes a name change (‘Oregon’ is appended to ‘Northern Oregon’) to reflect recent stock boundary changes. Changes in abundance estimates for the two stocks of harbor porpoise that occur in Oregon waters are the result of these boundary changes, and do not reflect biological changes in the populations. Updated information on the three stocks of false killer whales in Hawaiian waters is also included in these reports. Information on the remaining 50 Pacific region stocks will be reprinted without revision in the final 2009 reports and currently appears in the 2008 reports (Carretta et al. 2009). Stock Assessments for Alaskan marine mammals are published by the National Marine Mammal Laboratory (NMML) in a separate report. Pacific region stock assessments include those studied by the Southwest Fisheries Science Center (SWFSC, La Jolla, California), the Pacific Islands Fisheries Science Center (PIFSC, Honolulu, Hawaii), the National Marine Mammal Laboratory (NMML, Seattle, Washington), and the Northwest Fisheries Science Center (NWFSC, Seattle, WA). Northwest Fisheries Science Center staff prepared the report on the Eastern North Pacific Southern Resident killer whale. National Marine Mammal Laboratory staff prepared the Northern Oregon/Washington coast harbor porpoise stock assessment. Pacific Islands Fisheries Science Center staff prepared the report on the Hawaiian monk seal. Southwest Fisheries Science Center staff prepared stock assessments for 9 stocks. The stock assessment for the American Samoa humpback whale was prepared by staff from the Center for Coastal Studies, Hawaiian Islands Humpback National Marine Sanctuary, the Smithsonian Institution, and the Southwest Fisheries Science Center. Draft versions of the stock assessment reports were reviewed by the Pacific Scientific Review Group at the November 2008, Maui meeting. The authors also wish to thank those who provided unpublished data, especially Robin Baird and Joseph Mobley, who provided valuable information on Hawaiian cetaceans. Any omissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information on marine mammal stocks and fisheries becomes available. Background information and guidelines for preparing stock assessment reports are reviewed in Wade and Angliss (1997). The authors solicit any new information or comments which would improve future stock assessment reports. These Stock Assessment Reports summarize information from a wide range of sources and an extensive bibliography of all sources is given in each report. We strongly urge users of this document to refer to and cite original literature sources rather than citing this report or previous Stock Assessment Reports. If the original sources are not accessible, the citation should follow the format: [Original source], as cited in [this Stock Assessment Report citation].
Resumo:
Under the 1994 amendments to the Marine Mammal Protection Act, the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) were required to produce stock assessment reports for all marine mammal stocks in waters within the U.S. Exclusive Economic Zone. This document contains the stock assessment reports for the U.S. Pacific marine mammal stocks under NMFS jurisdiction. Marine mammal species which are under the management jurisdiction of the USFWS are not included in this report. A separate report containing background, guidelines for preparation, and .a summary of all stock assessment reports is available from the NMFS Office of Protected Resources. This report was prepared by staff of the Southwest Fisheries Science Center, NMFS and the Alaska Fisheries Science Center, NMFS. The information presented here was compiled primarily from published sources, but additional unpublished information was included where it contributed to the assessments. The authors wish to thanks the members of the Pacific Scientific Review Group for their valuable contributions and constructive criticism: Hannah Bernard, Robin Brown, Mark Fraker, Doyle Hanan, John Heyning, Steve Jeffries, Katherine Ralls, Michael Scott, and Terry Wright. Their comments greatly improved the quality of these reports, We also thanks the Marine Mammal Commission, The Humane Society of the United States, The Marine Mammal Center, The Center for Marine Conservation, and Friends of the Sea Otter for their careful reviews and thoughtful comments. Special thanks to Paul Wade of the Office of Protected Resources for his exhaustive review and comments, which greatly enhanced the consistency and technical quality of the reports. Any ommissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information becomes available and as changes to marine mammal stocks and fisheries occur; therefore, each stock assessment report is intended to be a stand alone document. The authors solicit any new information or comments which would improve future stock assessment reports. This is Southwest Fisheries Science Center Technical Memorandum NOAA-TM-NMFS-SWFSC- 219, July 1995. 111
Resumo:
The research presented in my PhD thesis is part of a wider European project, FishPopTrace, focused on traceability of fish populations and products. My work was aimed at developing and analyzing novel genetic tools for a widely distributed marine fish species, the European hake (Merluccius merluccius), in order to investigate population genetic structure and explore potential applications to traceability scenarios. A total of 395 SNPs (Single Nucleotide Polymorphisms) were discovered from a massive collection of Expressed Sequence Tags, obtained by high-throughput sequencing, and validated on 19 geographic samples from Atlantic and Mediterranean. Genome-scan approaches were applied to identify polymorphisms on genes potentially under divergent selection (outlier SNPs), showing higher genetic differentiation among populations respect to the average observed across loci. Comparative analysis on population structure were carried out on putative neutral and outlier loci at wide (Atlantic and Mediterranean samples) and regional (samples within each basin) spatial scales, to disentangle the effects of demographic and adaptive evolutionary forces on European hake populations genetic structure. Results demonstrated the potential of outlier loci to unveil fine scale genetic structure, possibly identifying locally adapted populations, despite the weak signal showed from putative neutral SNPs. The application of outlier SNPs within the framework of fishery resources management was also explored. A minimum panel of SNP markers showing maximum discriminatory power was selected and applied to a traceability scenario aiming at identifying the basin (and hence the stock) of origin, Atlantic or Mediterranean, of individual fish. This case study illustrates how molecular analytical technologies have operational potential in real-world contexts, and more specifically, potential to support fisheries control and enforcement and fish and fish product traceability.
Resumo:
Releasing captive-bred fish into natural environments (stocking) is common in fisheries worldwide. Although stocking is believed to have a positive effect on fish abundance over the short term, little is known about the long-term consequences of recurrent stocking and its influence on natural populations. In fact, there are growing concerns that genetically maladapted captive-bred fish can eventually reduce the abundance of natural population. In this study, we develop a simple model to quantitatively investigate the condition under which recurrent stocking has long-term effects on the natural population. Using a population dynamics model that takes into account a density-dependent recruitment, a gene responsible for the fitness difference between wild and captive-bred fish, and hybridization between them, we show that there is little or no contribution of recurrent stocking to the stock enhancement without a replacement of the wild gene pool by the captive-bred gene pool. The model further predicted that stocking of an intermediate level causes a reduction, rather than enhancement, of population size over the long term. The population decline due to stocking was attributed to the fitness disadvantage of captive-bred fish and strong overcompensation at recruitment stage. These results suggest that it would be difficult to simultaneously attain population size recovery and conservation of the local gene pool when captive-bred fish have fitness disadvantage in the wild, although caution is needed when applying the predictions from the simplified model to a specific species or population.