934 resultados para fiscal restrictions and us states
Resumo:
A small, but growing, body of literature searches for evidence of non-Keynesian effects of fiscal contractions. That is, some evidence exists that large fiscal contractions stimulate short-run economic activity. Our paper continues this research effort by systematically examining the effects, if any, of unusual fiscal events - either non-Keynesian results within a Keynesian model or Keynesian results within a neoclassical model -- on short-run economic activity. We examine this issue within three separate models -- a St. Louis equation, a Hall-type consumption equation, and a growth accounting equation. Our empirical findings are mixed, and do not provide strong systematic support for the view that unusually large fiscal contractions/expansions reverse the effects of normal fiscal events. Moreover, we find only limited evidence that trigger points are empirically important.
Resumo:
The Great Moderation, the significant decline in the variability of economic activity, provides a most remarkable feature of the macroeconomic landscape in the last twenty years. A number of papers document the beginning of the Great Moderation in the US and the UK. In this paper, we use the Markov regime-switching models of Hamilton (1989) and Hamilton and Susmel (1994) to document the end of the Great Moderation. The Great Moderation in the US and the UK begin at different point in time. The explanations for the Great Moderation fall into generally three different categories -- good monetary policy, improved inventory management, or good luck. Summers (2005) argues that a combination of good monetary policy and better inventory management led to the Great Moderation. The end of the Great Moderation, however, occurs at approximately the same time in both the US and the UK. It seems unlikely that good monetary policy would turn into bad policy or that better inventory management would turn into worse management. Rather, the likely explanation comes from bad luck. Two likely culprits exist . energy-price and housing-price shocks.
Resumo:
Ultrafiltration with tagged atoms was used to study physicochemical states (dissolved, colloidal, suspended) of Mn, Co, Ni, Zn, and Ce in bottom and interstitial waters collected in two areas of the Pacific Ocean with Fe-Mn nodules of different size, shape, structure and origin in different abundances. Use of filters with pore diameter of 0.05 ?m allowed to identify colloidal forms of the metals in bottom sediments and interstitial waters. It was demonstrated experimentally that differences in physicochemical situation in the studied areas could result in formation of nodules by different mechanisms, producing characteristic differences that were observed.
Resumo:
We construct an empirically informed computational model of fiscal federalism, testing whether horizontal or vertical equalization can solve the fiscal externality problem in an environment in which heterogeneous agents can move and vote. The model expands on the literature by considering the case of progressive local taxation. Although the consequences of progressive taxation under fiscal federalism are well understood, they have not been studied in a context with tax equalization, despite widespread implementation. The model also expands on the literature by comparing the standard median voter model with a realistic alternative voting mechanism. We find that fiscal federalism with progressive taxation naturally leads to segregation as well as inefficient and inequitable public goods provision while the alternative voting mechanism generates more efficient, though less equitable, public goods provision. Equalization policy, under both types of voting, is largely undermined by micro-actors' choices. For this reason, the model also does not find the anticipated effects of vertical equalization discouraging public goods spending among wealthy jurisdictions and horizontal encouraging it among poor jurisdictions. Finally, we identify two optimal scenarios, superior to both complete centralization and complete devolution. These scenarios are not only Pareto optimal, but also conform to a Rawlsian view of justice, offering the best possible outcome for the worst-off. Despite offering the best possible outcomes, both scenarios still entail significant economic segregation and inequitable public goods provision. Under the optimal scenarios agents shift the bulk of revenue collection to the federal government, with few jurisdictions maintaining a small local tax.
Resumo:
A dynamical model is proposed to describe the coupled decomposition and profile evolution of a free surfacefilm of a binary mixture. An example is a thin film of a polymer blend on a solid substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation) and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary conditions at the solid substrate and the free surface. General transport equations are derived using phenomenological nonequilibrium thermodynamics for a general nonisothermal setting taking into account Soret and Dufour effects and interfacial viscosity for the internal diffuse interface between the two components. Focusing on an isothermal setting the resulting model is compared to literature results and its base states corresponding to homogeneous or vertically stratified flat layers are analyzed.
Resumo:
Algebraic topology (homology) is used to analyze the state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are found in different flow fields in the simulations and are robust to substantial alterations to flow visualization conditions in the experiment. However, the asymmetries are not observable using conventional statistical measures. These results suggest homology may provide a new and general approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical models.
Resumo:
The effective mass Schrodinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band which are similar to those originated in quantum wires and quantum wells coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.
Resumo:
European Universities are involved in series of great changes regarding teaching and education organization during the last few years. The origin of these changes is the creation of the so-called European Higher Education Area (EHEA), which main target is to harmonize the different University studies throughout Europe. As a consequence, most of the programs of studies in all degrees are suffering changes in order to converge to common structures. Taking advantage of the actual process, some European universities are moving from traditional Agricultural Engineering programs to a more wide discipline named recently as Biosystems Engineering, which is a science- based engineering discipline that integrates engineering science and design with applied biological, environmental and agricultural sciences, broadening in this way the area of application of Engineering sciences not strictly to agricultural sciences, but to the biologic al sciences in general, including the agricultural sciences. This paper presents a comparative study of different Bachelor of Science degrees offered by American and European Universities in the field of Agricultural/Biosystems Engineering. To carry out the analysis 40 programs accredited by ABET in American Universities and 50 European programs. Among other questions, the total number of credits, the number of semesters, the kind of modules and the distribution of subjects in groups (Basic Sciences, Engineering Fundamentals, Agricultural/Biological Sciences, Humanities & Economic Sciences, Applied Agricultural/Biological Engineering and electives) are discussed in the paper. The information provided can be an useful starting point in future definitions of new or renewed degrees with the aim of advancing in internationalization of the programs and helping student’s mobility.
Resumo:
Application of a perpendicular magnetic field to charge neutral graphene is expected to result in a variety of broken symmetry phases, including antiferromagnetic, canted, and ferromagnetic. All these phases open a gap in bulk but have very different edge states and noncollinear spin order, recently confirmed experimentally. Here we provide an integrated description of both edge and bulk for the various magnetic phases of graphene Hall bars making use of a noncollinear mean field Hubbard model. Our calculations show that, at the edges, the three types of magnetic order are either enhanced (zigzag) or suppressed (armchair). Interestingly, we find that preformed local moments in zigzag edges interact with the quantum spin Hall like edge states of the ferromagnetic phase and can induce backscattering.