249 resultados para fibrils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent–dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24 h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the collagen system of the human myocardium are still limited compared to those on small laboratory animals. The aim of this work was to observe the collagen tissue of the myocardium of the human heart as a function of age. The types of collagen, as well as the density of collagen tissue and the diameter of collagen fibrils, were examined. Fragments of the left ventricular wall from 15 hearts, 5 from children, 5 from young adults, and 5 from elderly individuals, were analyzed by using the Picrosirius-polarization method and by transmission electron microscopy (TEM). The results showed the presence of collagen type III and collagen type I, both in the endomysium and perimysium of the 3 groups studied. Measurements of collagen content in myocardial tissue displayed that both endomysial and perimysial collagen increase in number and thickness in the adult and elderly. These histochemical results coincided with the observations obtained with the electron microscope in showing an increase in the number of collagen fibrils with a large diameter in the adult and elderly hearts. The present results on cardiac collagen may be important for assessing the pathogenesis of several cardiopathies in the hearts of children, young adults, and the elderly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the histogenesis of the odontogenic myxoma (OM). Dental pulp stem cells could be candidate precursors of OM because both OM and the dental pulp share the same embryological origin: the dental papilla. For the purpose of comparing OM and stem cells, this study analyzed the expression of two proteins related to OM invasiveness (MMP-2 and hyaluronic acid) in human immature dental pulp stern cells (hIDPSCs). Three lineages of hIDPSCs from deciduous and permanent teeth were used in this study. Immunofluorescence revealed positive reactions for MMP-2 and hyaluronic acid (HA) in all hIDPSCs. MMP-2 appeared as dots throughout the cytoplasm, whereas HA appeared either as diffuse and irregular dots or as short fibrils throughout the cytoplasm and outside the cell bodies. The gene expression profile of each cell lineage was evaluated using RT-PCR analysis, and HA was expressed more intensively than MMP-2. HA expression was similar among the three hIDPSCs lineages, whereas MMP-2 expression was higher in DL-1 than in the other cell lines. The expression of proteins related to OM invasiveness in hIDPSCs could indicate that OM originates from dental pulp stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of external agents on proteins function and structure is essential to elucidate the unfolding pathways and self-assemble properties. The knowledge of the protein amyloid fibril formation process is important due to the fields that this subjected is related, in particular for the neurodegenerative disorders. In the present work we studied the influence of both urea and 2,2,2-Trifluoroethanol (TFE) and temperature on the structure and proteinprotein interactions of Bovine Serum Albumin (BSA), by means of UV-Vis spectroscopy, static fluorescence and small angle X-ray scattering technique. The experiments were performed in samples composed by 10 and 3 mg/ml of BSA at pH 5.8, near the protein pI. First, Thioflavin-T fluorescence measurements indicated that urea, in the absence of TFE, was able to increase the amyloid fibril formation of BSA at 45oC and increasing the urea concentration the rate of amyloid fibril formation also increases. Concerning the presence of TFE, SAXS data suggest that BSA tridimensional structure is not altered by the presence of TFE 5% and 10% v/v in all studied protein concentrations. Interestingly, the presence of TFE on the urea-containing BSA also increases the rate of amyloid fibril formation, as compared to the TFE-free system, indicating that TFE can catalyze the amyloid-fibril formation. The presence of TFE 20% v/v, however, induces the formation of aggregates, but at this time we were not able to infer if such aggregates are amyloidlike or amorphous. Taking together, the results give support to infer that BSA can for fibrils in the presence of urea at 45oC and TFE can act as a stabilizer or as a denaturant agent for BSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomechanical roles of both tendons and ligaments are fulfilled by extracellular matrix of these tissues. In particular, tension is mainly transmitted and resisted by fibrous proteins (collagen, elastin), whereas compressive load is absorbed by water-soluble glycosaminoglycans (GAGs). GAGs spanning the interfibrillar spaces and interacting with fibrils also seem to play a part in transmitting and resisting tensile stresses. Apart from different functional roles and collagen array, tendons and ligaments share the same basic structure showing periodic undulations of collagen fibers or crimps. Each crimp is composed of many knots of each single fibril or fibrillar crimps. Fibrillar and fiber crimps act as shock absorbers during the initial elongation of both tendons and ligaments and assist the elastic recoil of fibrils and fibers when the tensile stress is removed. The aim of this thesis was to evaluate whether GAGs directly affect the 3D microstructural integrity of fibrillar crimp and fiber crimps in both tendons and ligaments. Achilles tendons and medial collateral ligaments of the knee from eight female Sprague-Dawley rats (90 days old) were digested with chondroitinase ABC to remove GAGs and observed under a scanning electron microscope (SEM). In addition, isolated fibrils from these tissues obtained by mechanical homogenization were analyzed by a transmission electron microscope (TEM). Both samples digested with chondroitinase ABC or mechanically disrupted still showed crimps and fibrillar crimps comparable to tissues with a normal GAGs content. All fibrils in the fibrillar crimp region always twisted leftwards, thus changing their running plane, and then sharply bent, changing their course on a new plane. These data suggest that GAGs do not affect structural integrity or fibrillar crimps functions that seem mainly related to the local fibril leftward twisting and the alternating handedness of collagen from a molecular to a supramolecular level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amyloid peptide (Aß), a normal constituent of neuronal and non-neuronal cells, has been shown to be a major component of the extracellular plaque of Alzheimer’s disease (AD). The interaction of Aß peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of AD. In this study, we have developed peptide-tethered artificial lipid membranes by the Langmuir-Blodgett and Langmuir-Schaefer methods. Anti-Aß40-mAb labeled with a fluorophore was used to probe the Aß40 binding to the model membrane system. Systematic studies on the antibody or Aß-membrane interactions were carried out in our model systems by Surface Plasmon Field-Enhanced Fluorescence Spectroscopy (SPFS). Aß adsorption is critically determined by the lipid composition of the membranes. Aß specifically binds with membranes of sphingomyelin, and this preferential adsorption was markedly amplified by the addition of sterols (cholesterol or 25-OH-Chol). Fluorescence microscopy indicated that 25-OH-Chol could also form micro-domains with sphingomyelin as cholesterol does at the conditions used for the built-up of the model membranes. Our findings suggest that micro-domains composed of sphingomyelin and the sterols could be the binding sites of Aß and the role of sphingomyelin in AD should receive much more attention. The artificial membranes provide a novel platform for the study on AD, and SPFS is a potential tool for detecting Aß-membrane interaction. Numerous investigations indicate that the ability of Aß to form fibrils is considerably dependent upon the levels of ß-sheet structure adopted by Aß. Membrane-mediated conformational transition of Aß has been demonstrated. In this study, we focus on the interaction of Aß and the membranes composed of POPC/SM/25-OH-Chol (2:1:1). The artificial membrane system was established by the methods as described above. Immunoassy based on a pair of monoclonal antibodies (mAbs) against different epitopes was employed to detect the orientation of the Aß at the model membranes. Kinetics of antibody-Aß binding was determined by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The attempt has also been made to probe the change in the conformation of Aß using SPFS combined with immunoassay. Melatonin was employed to induce the conformational change of Aß. The orientation and the conformational change of Aß are evaluated by analysing kinetic/affinity parameters. This work provides novel insight into the investigation on the structure of Aß at the membrane surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present research thesis was focused on the development of new biomaterials and devices for application in regenerative medicine, particularly in the repair/regeneration of bone and osteochondral regions affected by degenerative diseases such as Osteoarthritis and Osteoporosis or serious traumas. More specifically, the work was focused on the synthesis and physico-chemical-morphological characterization of: i) a new superparamagnetic apatite phase; ii) new biomimetic superparamagnetic bone and osteochondral scaffolds; iii) new bioactive bone cements for regenerative vertebroplasty. The new bio-devices were designed to exhibit high biomimicry with hard human tissues and with functionality promoting faster tissue repair and improved texturing. In particular, recent trends in tissue regeneration indicate magnetism as a new tool to stimulate cells towards tissue formation and organization; in this perspective a new superparamagnetic apatite was synthesized by doping apatite lattice with di-and trivalent iron ions during synthesis. This finding was the pin to synthesize newly conceived superparamagnetic bone and osteochondral scaffolds by reproducing in laboratory the biological processes yielding the formation of new bone, i.e. the self-assembly/organization of collagen fibrils and heterogeneous nucleation of nanosized, ionically substituted apatite mimicking the mineral part of bone. The new scaffolds can be magnetically switched on/off and function as workstations guiding fast tissue regeneration by minimally invasive and more efficient approaches. Moreover, in the view of specific treatments for patients affected by osteoporosis or traumas involving vertebrae weakening or fracture, the present work was also dedicated to the development of new self-setting injectable pastes based on strontium-substituted calcium phosphates, able to harden in vivo and transform into strontium-substituted hydroxyapatite. The addition of strontium may provide an anti-osteoporotic effect, aiding to restore the physiologic bone turnover. The ceramic-based paste was also added with bio-polymers, able to be progressively resorbed thus creating additional porosity in the cement body that favour cell colonization and osseointegration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large oligomeric proteins often contain several binding sites for different molecules and can therefore induce formation of larger protein complexes. Collagen XII, a multidomain protein with a small collagenous region, interacts with fibrillar collagens through its C-terminal region. However, no interactions to other extracellular proteins have been identified involving the non-collagenous N-terminal NC3 domain. To further elucidate the components of protein complexes present close to collagen fibrils, different extracellular matrix proteins were tested for interaction in a solid phase assay. Binding to the NC3 domain of collagen XII was found for the avian homologue of tenascin-X that in humans is linked to Ehlers-Danlos disease. The binding was further characterized by surface plasmon resonance spectroscopy and supported by immunohistochemical co-localization in chick and mouse tissue. On the ultrastructural level, detection of collagen XII and tenascin-X by immunogold labeling confirmed this finding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Root canal obliterations may pose esthetic and clinical problems or may even be a risk factor for tooth survival. Microcalcifications in the pulp can be so extensive that the entire root canal system becomes obliterated. Since bone sialoprotein (BSP) and osteopontin (OPN) are involved in both physiological and pathological mineralization processes, our hypothesis was that these two bone-related noncollagenous proteins are present in microcalcifications of the pulp. The purpose of this study was, therefore, to characterize the nature of microcalcifications in the pulp of aged human teeth. Methods: From a large collection of human teeth, 10 were found to exhibit pulpal microcalcifications. The teeth were extracted for periodontal reasons from 39-60 year old patients. After fixation in aldehydes and decalcification, teeth were processed for embedding in LR White resin for analysis in the light and transmission electron microscope. For the detection of BSP and OPN, post-embedding high resolution immunocytochemistry was applied. Results: The microcalcifications were round or elongated, occasionally coalescing, and intensely stained with toluidine blue. Collagen fibrils were found in most but not all microcalcifications. All microcalcifications were immunoreactive for both antibodies and showed an identical labeling pattern. Gold particle labeling was extensively found throughout the interfibrillar ground substance of the microcalcifications, whereas the dentin matrix lacked immunolabeling. Conclusion: BSP and OPN appear to be major matrix constituents of pulp microcalcifications and may thus, like in other mineralized tissues, be involved in their mineralization process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers are typically electrically and thermally insulating materials. The electrical and thermal conductivities of polymers can be increased by the addition conductive fillers such as carbons. Once the polymer composites have been made electrically and thermally conductive, they can be used in applications where these conductivities are desired such as electromagnetic shielding and static dissipation. In this project, three carbon nanomaterials are added to polycarbonate to enhance the electrical and thermal conductivity of the resulting composite. Hyperion Catalysis FIBRILs carbon nanotubes were added to a maximum loading of 8 wt%. Ketjenblack EC-600 JD carbon black was added to a maximum loading of 10 wt%. XG Sciences xGnP™ graphene nanoplatelets were added to a maximum loading of 15 wt%. These three materials have drastically different morphologies and will have varying effects on the various properties of polycarbonate composites. It was determined that carbon nanotubes have the largest effect on electrical conductivity with an 8 wt% carbon nanotube in polycarbonate composite having an electrical conductivity of 0.128 S/cm (from a pure polycarbonate value of 10-17 S/cm). Carbon black has the next largest effect with an 8 wt% carbon black in polycarbonate composite having an electrical conductivity of 0.008 S/cm. Graphene nanoplatelets have the least effect with an 8 wt% graphene nanoplatelet in polycarbonate having an electrical conductivity of 2.53 x 10-8 S/cm. Graphene nanoplatelets show a significantly higher effect on increasing thermal conductivity than either carbon nanotubes or carbon black. Mechanically, all three materials have similar effects with graphene nanoplatelets being somewhat more effective at increasing the tensile modulus of the composite than the other fillers. Carbon black and graphene nanoplatelets show standard carbon-filler rheology where the addition of filler increases the viscosity of the resulting composite. Carbon nanotubes, on the other hand, show an unexpected rheology. As carbon nanotubes are added to polycarbonate the viscosity of the composite is reduced below that of the original polycarbonate. It was seen that the addition of carbon nanotubes offsets the increased viscosity from a second filler, such as carbon black or graphene nanoplatelets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Menisci are anchored to the tibia by means of ligament-like structures called meniscal attachments. Failure material properties of bovine meniscal attachments were obtained. There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). Furthermore, Glycosaminoglycan (GAG) fraction and crimping frequency was obtained for each attachment using histology and differential interference contrast (DIC) respectively. Results showed that the anterior attachment’s insertion had the greatest GAG fraction when compared to the posterior attachment’s insertion. Crimp frequency of the collagen fibrils was homogeneous along the length. Moreover, Scanning Electron Microscopy (SEM) technique was used to reveal the morphology of collagen in human meniscal attachments. Its midsubstance was composed of collagen fascicles running parallel to the longitudinal axis, with a few fibrils running obliquely, and others transversely. There were no differences between attachments for crimping angle or length. Since ligamentous-type tissues are comprised mainly of water, the fluid pressure within meniscal horn attachments was measured using a Fiber Optic Microsensor (FOM). Four cadaveric human joints were subjected to 2BW compressive load (ramp) at 0-, 15-, and 30-degrees of flexion for a minute and then the load was hold for 20 minutes (equilibrium). There were significant differences between 0- and 15- (p1– c5) were obtained. Significant differences were found on the straightened collagen fibers coefficient (c5) between MP and LA attachments (p