977 resultados para feature representation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relevance feature and ontology are two core components to learn personalized ontologies for concept-based retrievals. However, how to associate user native information with common knowledge is an urgent issue. This paper proposes a sound solution by matching relevance feature mined from local instances with concepts existing in a global knowledge base. The matched concepts and their relations are used to learn personalized ontologies. The proposed method is evaluated elaborately by comparing it against three benchmark models. The evaluation demonstrates the matching is successful by achieving remarkable improvements in information filtering measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information retrieval (IR) by clinicians in the healthcare setting is critical for informing clinical decision-making. However, a large part of this information is in the form of free-text and inhibits clinical decision support and effective healthcare services. This makes meaningful use of clinical free-­text in electronic health records (EHRs) for patient care a difficult task. Within the context of IR, given a repository of free-­text clinical reports, one might want to retrieve and analyse data for patients who have a known clinical finding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building information modeling (BIM) is an emerging technology and process that provides rich and intelligent design information models of a facility, enabling enhanced communication, coordination, analysis, and quality control throughout all phases of a building project. Although there are many documented benefits of BIM for construction, identifying essential construction-specific information out of a BIM in an efficient and meaningful way is still a challenging task. This paper presents a framework that combines feature-based modeling and query processing to leverage BIM for construction. The feature-based modeling representation implemented enriches a BIM by representing construction-specific design features relevant to different construction management (CM) functions. The query processing implemented allows for increased flexibility to specify queries and rapidly generate the desired view from a given BIM according to the varied requirements of a specific practitioner or domain. Central to the framework is the formalization of construction domain knowledge in the form of a feature ontology and query specifications. The implementation of our framework enables the automatic extraction and querying of a wide-range of design conditions that are relevant to construction practitioners. The validation studies conducted demonstrate that our approach is significantly more effective than existing solutions. The research described in this paper has the potential to improve the efficiency and effectiveness of decision-making processes in different CM functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding and labelling semantic features patterns of documents in a large, spatial corpus is a challenging problem. Text documents have characteristics that make semantic labelling difficult; the rapidly increasing volume of online documents makes a bottleneck in finding meaningful textual patterns. Aiming to deal with these issues, we propose an unsupervised documnent labelling approach based on semantic content and feature patterns. A world ontology with extensive topic coverage is exploited to supply controlled, structured subjects for labelling. An algorithm is also introduced to reduce dimensionality based on the study of ontological structure. The proposed approach was promisingly evaluated by compared with typical machine learning methods including SVMs, Rocchio, and kNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. In recent years, sparse representation based classification(SRC) has received much attention in face recognition with multipletraining samples of each subject. However, it cannot be easily applied toa recognition task with insufficient training samples under uncontrolledenvironments. On the other hand, cohort normalization, as a way of mea-suring the degradation effect under challenging environments in relationto a pool of cohort samples, has been widely used in the area of biometricauthentication. In this paper, for the first time, we introduce cohort nor-malization to SRC-based face recognition with insufficient training sam-ples. Specifically, a user-specific cohort set is selected to normalize theraw residual, which is obtained from comparing the test sample with itssparse representations corresponding to the gallery subject, using poly-nomial regression. Experimental results on AR and FERET databases show that cohort normalization can bring SRC much robustness against various forms of degradation factors for undersampled face recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overrepresentation of students from minority ethnic groups in separate special education settings has been extensively documented in North America, yet little research exists for Australian school systems. To address this gap, we systematically analyzed 13 years of enrolment data from the state of New South Wales. Stark differences are seen in patterns of enrolment between Indigenous students, students from a Language Background Other than English (LBOTE), and non-Indigenous English speaking students. Moreover, these differences are increasing. While enrollments of Indigenous students in separate settings increased faster across time than did enrollments of Indigenous students in mainstream, enrollments of LBOTE students in mainstream increased faster than did enrollments of LBOTE students in separate settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance suffer from poor resolution of the acquired iris images, which significantly degrades iris recognition performance. Super-resolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, most existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values, rather than the actual features used for recognition. This paper thoroughly investigates transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. A framework for applying super-resolution to nonlinear features in the feature-domain is proposed. Based on this framework, a novel feature-domain super-resolution approach for the iris biometric employing 2D Gabor phase-quadrant features is proposed. The approach is shown to outperform its pixel domain counterpart, as well as other feature domain super-resolution approaches and fusion techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past couple of decades, the cultural field formerly known as ‘domestic’, and later ‘personal’ photography has been remediated and transformed as part of the social web, with its convergence of personal expression, interpersonal communication, and online social networks (most recently via platforms like Flickr, Facebook and Twitter). Meanwhile, the Digital Storytelling movement (involving the workshop-based production of short autobiographical videos) from its beginnings in the mid 1990s relied heavily on the narrative power of the personal photograph, often sourced from family albums, and later from online archives. This paper addresses the new issues arising for the politics of self-representation and personal photography in the era of social media, focusing particularly on the consequences of online image-sharing. It discusses in detail the practices of selection, curation, manipulation and editing of personal photographic images among a group of activist-oriented queer digital storytellers who have in common a stated desire to share their personal stories in pursuit of social change, and whose stories often aim to address both intimate and antagonistic publics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study for automatic discovery of text features for describing user information needs. It presents an innovative data-mining approach that discovers useful knowledge from both relevance and non-relevance feedback information. The proposed approach can largely reduce noises in discovered patterns and significantly improve the performance of text mining systems. This study provides a promising method for the study of Data Mining and Web Intelligence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a cluster ensemble method to map the corpus documents into the semantic space embedded in Wikipedia and group them using multiple types of feature space. A heterogeneous cluster ensemble is constructed with multiple types of relations i.e. document-term, document-concept and document-category. A final clustering solution is obtained by exploiting associations between document pairs and hubness of the documents. Empirical analysis with various real data sets reveals that the proposed meth-od outperforms state-of-the-art text clustering approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considers the challenges in representing women from other cultures in the crime fiction genre. The study is presented in two parts; an exegesis and a creative practice component consisting of a full length crime fiction novel, Batafurai. The exegesis examines the historical period of a section of the novel—post-war Japan—and how the area of research known as Occupation Studies provides an insight into the conditions of women during this period. The exegesis also examines selected postcolonial theory and its exposition of representations of the 'other' as a western construct designed to serve Eurocentric ends. The genre of crime fiction is reviewed, also, to determine how characters purportedly representing Oriental cultures are constricted by established stereotypes. Two case studies are examined to investigate whether these stereotypes are still apparent in contemporary Australian crime fiction. Finally, I discuss my own novel, Batafurai, to review how I represented people of Asian background, and whether my attempts to resist stereotype were successful. My conclusion illustrates how novels written in the crime fiction genre are reliant on strategies that are action-focused, rather than character-based, and thus often use easily recognizable types to quickly establish frameworks for their stories. As a sub-set of popular fiction, crime fiction has a tendency to replicate rather than challenge established stereotypes. Where it does challenge stereotypes, it reflects a territory that popular culture has already visited, such as the 'female', 'black' or 'gay' detective. Crime fiction also has, as one of its central concerns, an interest in examining and reinforcing the notion of societal order. It repeatedly demonstrates that crime either does not pay or should not pay. One of the ways it does this is to contrast what is 'good', known and understood with what is 'bad', unknown, foreign or beyond our normal comprehension. In western culture, the east has traditionally been employed as the site of difference, and has been constantly used as a setting of contrast, excitement or fear. Crime fiction conforms to this pattern, using the east to add a richness and depth to what otherwise might become a 'dry' tale. However, when used in such a way, what is variously eastern, 'other' or Oriental can never be paramount, always falling to secondary side of the binary opposites (good/evil, known/unknown, redeemed/doomed) at work. In an age of globalisation, the challenge for contemporary writers of popular fiction is to be responsive to an audience that demands respect for all cultures. Writers must demonstrate that they are sensitive to such concerns and can skillfully manage the tensions caused by the need to deliver work that operates within the parameters of the genre, and the desire to avoid offence to any cultural or ethnic group. In my work, my strategy to manage these tensions has been to create a back-story for my characters of Asian background, developing them above mere genre types, and to situate them with credibility in time and place through appropriate historical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.