191 resultados para faulting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lesser Himalayan fold-thrust belt on the south flank of the Jajarkot klippe in west central Nepal was mapped in detail between the Main Central thrust in the north and the Main Boundary thrust in the south. South of the Jajarkot klippe, the fold-thrust belt involves sandstone, shale and carbonate rocks that are unmetamorphosed in the foreland and increase in metamorphic grade with higher structural position to sub-greenschist facies towards the hinterland. The exposed stratigraphy is correlative with the Proterozoic Ranimata, Sangram, Galyang, Syangia Formations and Lakharpata Group of Western Nepal and overlain by the Paleozoic Tansen and Kali Gandaki Groups. Based on field mapping and cross-section construction, three distinct thrust sheets were identified separated by top-to-the-south thrust faults. From the foreland (south) to the hinterland (north), the first thrust sheet in the immediate hanging wall of the Main Boundary thrust defines an open syncline. The second thrust sheet contains a very broad synformal duplex, which is structurally stacked against the third thrust sheet containing a homoclinal panel of the oldest exposed Proterozoic stratigraphy. Outcrop scale folds throughout the study area are predominantly south vergent, open, and asymmetric reflecting the larger regional scale folding style, which corroborate the top-to-the-south deformation style seen in the faults of the region. Field techniques were complemented with microstructural and quartz crystallographic c-axis preferred orientation analyses using a petrographic microscope and a fabric analyzer, respectively. Microstructural analysis identified abundant strain-induced recrystallization textures and occasional occurrences of top-to-the-south shear-sense indicators primarily in the hinterland rocks in the immediate footwall of the Main Central Thrust. Top-to-the-south shearing is also supported by quartz crystallographic c-axis preferred orientations. Quartz recrystallization textures indicate an increase in deformation temperature towards the Main Central thrust. A line balance estimate indicates that approximately 15 km of crustal shortening was accommodated by folding and faulting in the fold-thrust belt south of the Jajarkot klippe. Additionally, estimations of shortening velocity suggest that the shortening velocity operating in this section of the fold-thrust belt between 23 to 14 Ma was slower than what is currently observed as a result of the ongoing deformation of the Sub-Himalayan fold-thrust belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Albert/Mobutu lies along the Zaire-Uganda border in 43/57 per cent ratio in the faulted depression tending south-west to the north east. It is bounded by latitudes 1o0 n to 2o 20’ N and longitudes 30o 20’ to 31o 20’E. It has a width varying from 35 to 45 km (22 to 28 miles) as measured between the scarps at the lake level. It covers an area of 5600km2 and has a maximum depth of 48m. The major inflow is through the Semiliki, an outflow of Lake Edward, Muzizi and Victoria Nile draining lakes Victoria and Kyoga while the Albert Nile is the outflow. The physical, chemical and biological productivity parameters are summarized in Table 1. The scarp is steep but not sheer and there are at least 4 tracks leading down it to villages on the shore and scarp land scarp is a young one, formed as a result of earth movements of the Pleistocene times, and the numerous streams come down headlong down its thousand feet drop, more often than not in falls (Baker, 1954). Sometimes there appears to be a clean fault; and at other places there is the appearrence of step faulting, although this may be of only a superical nature .The escarpment’s composed of rocks belonging to the pre-Cambrian Basement complex of the content; but the floor of the depression is covered with young sedimentary rocks, known as kaiso beds. In their upper part these latter beds contains many pebbles; whilst low down the occurrence fossiliferous beds is sufficiently rare phenomenon in the interior plateau of Africa. The kaiso beds dated as possibly middle Pleistocene in age, are exposed in various flats on the shore, and they presumably extend under the relatively shallow waters of the lake. A feature of the shore is the development of sandpits and the enclosure of lagoons; and these can be observed in various stages of development at kaiso, Tonya, kibiro, Buhuka and above all, at Butiaba. On an island lake over 1100 km (700 miles) from the shores of the Indian Ocean one can thus study some of the shore-line phenomena usually associated with the sea- coast (Worthington, 1929). In the north, from Butiaba onwards, the flats become wider and from a continuous lowland as the lake shore curves away from the straight edge of the escarpment. At a height of just 610m (2000 feet) above sea-level, the rift valley floor at Butiaba has a mean annual temperature of 25.60c (780 f), from which there is virtually no seasonal variation; and and the mean daily range is only 6.50c (130f) (E.Afr. met. Dept.1953). With a mean annual rainfall of not much more than 762mm (309 inches) and only 92 rain days in ayear, again to judge from Butiaba, conditions in the rift valley are semi-arid; and the vegetation cover consists of grasses and scattered drought-resisting trees and bushes. Only near the stream courses does the vegetation thicken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200–1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subduction of a narrow slab of oceanic lithosphere beneath a tightly curved orogenic arc requires the presence of at least one lithospheric scale tear fault. While the Calabrian subduction beneath southern Italy is considered to be the type example of this geodynamic setting, the geometry, kinematics and surface expression of the associated lateral, slab tear fault offshore eastern Sicily remain controversial. Results from a new marine geophysical survey conducted in the Ionian Sea, using high-resolution bathymetry and seismic profiling reveal active faulting at the seafloor within a 140 km long, two-branched fault system near Alfeo Seamount. The previously unidentified 60 km long NW trending North Alfeo Fault system shows primarily strike-slip kinematics as indicated by the morphology and steep-dipping transpressional and transtensional faults. Available earthquake focal mechanisms indicate dextral strike-slip motion along this fault segment. The 80 km long SSE trending South Alfeo fault system is expressed by one or two steeply dipping normal faults, bounding the western side of a 500+ m thick, 5 km wide, elongate, syntectonic Plio-Quaternary sedimentary basin. Both branches of the fault system are mechanically capable of generating magnitude 6-7 earthquakes like those that struck eastern Sicily in 1169, 1542, and 1693.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mid-oceanic ridge system is a feature unique to Earth. It is one of the fundamental components of plate tectonics and reflects interior processes of mantle convection within the Earth. The thermal structure beneath the mid-ocean ridges has been the subject of several modeling studies. It is expected that the elastic thickness of the lithosphere is larger near the transform faults that bound mid-ocean ridge segments. Oceanic core complexes (OCCs), which are generally thought to result from long-lived fault slip and elastic flexure, have a shape that is sensitive to elastic thickness. By modeling the shape of OCCs emplaced along a ridge segment, it is possible to constraint elastic thickness and therefore the thermal structure of the plate and how it varies along-axis. This thesis builds upon previous studies that utilize thin plate flexure to reproduce the shape of OCCs. I compare OCC shape to a suite of models in which elastic thickness, fault dip, fault heave, crustal thickness, and axial infill are systematically varied. Using a grid search, I constrain the parameters that best reproduce the bathymetry and/or the slope of ten candidate OCCs identified along the 12°—15°N segment of the Mid-Atlantic Ridge. The lithospheric elastic thicknesses that explains these OCCs is thinner than previous investigators suggested and the fault planes dip more shallowly in the subsurface, although at an angle compatible with Anderson’s theory of faulting. No relationships between model parameters and an oceanic core complexes location within a segment are identified with the exception that the OCCs located less than 20km from a transform fault have slightly larger elastic thickness than OCCs in the middle of the ridge segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change, intensive use, and population growth are threatening the availability of water resources. New sources of water, better knowledge of existing ones, and improved water management strategies are of paramount importance. Ground water is often considered as primary water source due to its advantages in terms of quantity, spatial distribution, and natural quality. Remote sensing techniques afford scientists a unique opportunity to characterize landscapes in order to assess groundwater resources, particularly in tectonically influenced areas. Aquifers in volcanic basins are considered the most productive aquifers in Latin America. Although topography is considered the primary driving force for groundwater flows in mountainous terrains, tectonic activity increases the complexity of these groundwater systems by altering the integrity of sedimentary rock units and the overlying drainage networks. Structural controls affect the primary hydraulic properties of the rock formations by developing barriers to flow in some cases and zones of preferential infiltration and subterranean in others. The study area focuses on the Quito Aquifer System (QAS) in Ecuador. The characterization of the hydrogeology started with a lineament analysis based on a combined remote sensing and digital terrain analysis approach. The application of classical tools for regional hydrogeological evaluation and shallow geophysical methods were useful to evaluate the impact of faulting and fracturing on the aquifer system. Given the spatial extension of the area and the complexity of the system, two levels of analysis were applied in this study. At the regional level, a lineament map was created for the QAS. Relationships between fractures, faults and lineaments and the configuration of the groundwater flow on the QAS were determined. At the local level, on the Plateaus region of the QAS, a detailed lineament map was obtained by using high-spatial-resolution satellite imagery and aspect map derived from a digital elevation model (DEM). This map was complemented by the analysis of morphotectonic indicators and shallow geophysics that characterize fracture patterns. The development of the groundwater flow system was studied, drawing upon data pertaining to the aquifer system physical characteristics and topography. Hydrochemistry was used to ascertain the groundwater evolution and verify the correspondence of the flow patterns proposed in the flow system analysis. Isotopic analysis was employed to verify the origin of groundwater. The results of this study show that tectonism plays a very important role for the hydrology of the QAS. The results also demonstrate that faults influence a great deal of the topographic characteristics of the QAS and subsequently the configuration of the groundwater flow. Moreover, for the Plateaus region, the results demonstrate that the aquifer flow systems are affected by secondary porosity. This is a new conceptualization of the functioning of the aquifers on the QAS that will significantly contribute to the development of better strategies for the management of this important water resource.