865 resultados para false problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal ultra-wide field of view images (fundus images) provides the visu-alization of a large part of the retina though, artifacts may appear in those images. Eyelashes and eyelids often cover the clinical region of interest and worse, eye-lashes can be mistaken with arteries and/or veins when those images are put through automatic diagnosis or segmentation software creating, in those cases, the appearance of false positives results. Correcting this problem, the first step in the development of qualified auto-matic diseases diagnosis programs can be done and in that way the development of an objective tool to assess diseases eradicating the human error from those processes can also be achieved. In this work the development of a tool that automatically delimitates the clinical region of interest is proposed by retrieving features from the images that will be analyzed by an automatic classifier. This automatic classifier will evaluate the information and will decide which part of the image is of interest and which part contains artifacts. The results were validated by implementing a software in C# language and validated through a statistical analysis. From those results it was confirmed that the methodology presented is capable of detecting artifacts and selecting the clin-ical region of interest in fundus images of the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The phospholipase activity in Candida albicans and Candida dubliniensis isolated from oral candidiasis cases were studied. METHODS: The phospholipase activity was evaluated in egg yolk agar. RESULTS: All the C. albicans isolates (n = 48) showed phospholipase activity (mean Pz = 0.66). However, none of the C. dubliniensis isolates (n = 24) showed this activity. CONCLUSIONS: The authors discuss whether these findings are a true characteristic of C. dubliniensis or a consequence of the methodology employed, which includes the possibility that NaCl may have inhibited the enzymatic activity of C. dubliniensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Envenoming snakebites are thought to be a particularly important threat to public health worldwide, especially in rural areas of tropical and subtropical countries. The true magnitude of the public health threat posed by snakebites is unknown, making it difficult for public health officials to optimize prevention and treatment. The objective of this work was to conduct a systematic review of the literature to gather data on snakebite epidemiology in the Amazon region and describe a case series of snakebites from epidemiological surveillance in the State of Amazonas (1974-2012). Only 11 articles regarding snakebites were found. In the State of Amazonas, information regarding incidents involving snakes is scarce. Historical trends show an increasing number of cases after the second half of the 1980s. Snakebites predominated among adults (20-39 years old; 38%), in the male gender (78.9%) and in those living in rural areas (85.6%). The predominant snake envenomation type was bothropic. The incidence reported by the epidemiological surveillance in the State of Amazonas, reaching up to 200 cases/100,000 inhabitants in some areas, is among the highest annual snakebite incidence rates of any region in the world. The majority of the cases were reported in the rainy season with a case-fatality rate of 0.6%. Snakebite envenomation is a great disease burden in the State of Amazonas, representing a challenge for future investigations, including approaches to estimating incidence under-notification and case-fatality rates as well as the factors related to severity and disabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If widespread deforestation in Amazon results in reduced evaporative water flux, then either a decrease in evaporation is compensated locally by reduced rainfall,or else changed moisture balance expresses itself downwind in the yet undisturbed forest. The question of where rain will occur is crucial. It is suggested that the appearance of clouds and the occurrence of rainout is governed primarily by the interplay of local meteorologic and physical geography parameters with the atmospheric stability structure except for a few well-defined periods when rain is dominated by large scale atmospheric instability. This means that the study of these phenomena (local heat balances,studies on cloud formation mechanism, vertical atmospheric stability, etc.) must be made on the scale of the cloud size, a few tens of kilometers at most.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter aims at developing a taxonomic framework to classify the studies on the flexible job shop scheduling problem (FJSP). The FJSP is a generalization of the classical job shop scheduling problem (JSP), which is one of the oldest NP-hard problems. Although various solution methodologies have been developed to obtain good solutions in reasonable time for FSJPs with different objective functions and constraints, no study which systematically reviews the FJSP literature has been encountered. In the proposed taxonomy, the type of study, type of problem, objective, methodology, data characteristics, and benchmarking are the main categories. In order to verify the proposed taxonomy, a variety of papers from the literature are classified. Using this classification, several inferences are drawn and gaps in the FJSP literature are specified. With the proposed taxonomy, the aim is to develop a framework for a broad view of the FJSP literature and construct a basis for future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To solve a health and safety problem on a waste treatment facility, different multicriteria decision methods were used, including the PROV Exponential decision method. Four alternatives and ten attributes were considered. We found a congruent solution, validated by the different methods. The AHP and the PROV Exponential decision method led us to the same options ordering, but the last method reinforced one of the options as being the best performing one, and detached the least performing option. Also, the ELECTRE I method results led to the same ordering which allowed to point the best solution with reasonable confidence. This paper demonstrates the potential of using multicriteria decision methods to support decision making on complex problems such as risk control and accidents prevention.