867 resultados para evoked potentials
Resumo:
To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception.
Resumo:
We report that fast (mainly 30- to 40-Hz) coherent electric field oscillations appear spontaneously during brain activation, as expressed by electroencephalogram (EEG) rhythms, and they outlast the stimulation of mesopontine cholinergic nuclei in acutely prepared cats. The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively suppressed during the prolonged phase of the slow (<1-Hz) sleep oscillation that is associated with hyperpolarization of cortical neurons. The fast (30- to 40-Hz) rhythms are synchronized intracortically within vertical columns, among closely located cortical foci, and through reciprocal corticothalamic networks. The fast oscillations do not reverse throughout the depth of the cortex. This aspect stands in contrast with the conventional depth profile of evoked potentials and slow sleep oscillations that display opposite polarity at the surface and midlayers. Current-source-density analyses reveal that the fast oscillations are associated with alternating microsinks and microsources across the cortex, while the evoked potentials and the slow oscillation display a massive current sink in midlayers, confined by two sources in superficial and deep layers. The synchronization of fast rhythms and their high amplitudes indicate that the term "EEG desynchronization," used to designate brain-aroused states, is incorrect and should be replaced with the original term, "EEG activation" [Moruzzi, G. & Magoun, H.W. (1949) Electroencephalogr. Clin. Neurophysiol. 1, 455-473].
Resumo:
During early development, interactions between the two eyes are critical in the formation of eye-specific domains within the lateral geniculate nucleus and the visual cortex. When monocular enucleation is done early in prenatal life, it induces remarkable anatomical and functional reorganizations of the visual pathways. Behavioral data have shown a loss in sensitivity to low-spatial-frequency gratings in cats. To correlate the behavioral observations with a possible change in the analysis of contrast at the level of primary visual areas we recorded visual evoked potentials at the 17/18 border in two cats enucleated prenatally (gestational age at enucleation, 39-42 days), three neonatal, two control animals, and one animal with a surgical removal of Y-ganglion fibers. Our results show a strong attenuation in the amplitude of response at all contrast values for gratings of low spatial frequency in prenatally enucleated cats, whereas neonatally enucleated and control animals present responses of comparable amplitude. We conclude that the behavioral results reflect the reduced sensitivity for low frequencies of visual cortical neurons. In addition, we define a critical period for the development of the contrast-sensitivity function that seems to be limited to the prenatal gestation period. We suggest that the prenatal interruption of binocular interactions leads to a functional elimination of the Y-ganglion system.
Resumo:
Introdução: O implante coclear (IC) amplamente aceito como forma de intervenção e (re) habilitação nas perdas auditivas severas e profundas nas diversas faixas etárias. Contudo observa-se no usuário do IC unilateral queixas como localização e compreensão sonora em meio ao ruído, gerado pelo padrão anormal de estimulação sensorial. A fim de fornecer os benefícios da audição binaural, é preconizado a estimulação bilateral, seja por meio do IC bilateral ou com a adaptação de um aparelho de amplificação sonora individual (AASI) contralateralmente ao IC. Esta última condição é referida como estimulação bimodal, quando temos, concomitantemente dois modos de estimulação: Elétrica (IC) e acústica (AASI). Não há dados suficientes na literatura voltados à população infantil que esclareça ou demonstre o desenvolvimento do córtex auditivo na audição bimodal. Ressalta-se que não foram encontrados estudos em crianças. Objetivo: Caracterizar o PEAC complexo P1, N1 P2 em usuários da estimulação bimodal e verificar se há correlação com testes de percepção de fala. Metodologia: Estudo descritivo de séries de casos, com a realização do PEAC em cinco crianças usuárias da estimulação bimodal, a partir da metodologia proposta por Ventura (2008) utilizando o sistema Smart EP USB Jr da Intelligent Hearing Systems. Foi utilizado o som de fala /da/, apresentado em campo livre. O exame será realizado em três situações: Somente IC, IC e AASI e somente AASI. A análise dos dados dos potenciais corticais foi realizada após a marcação da presença ou ausência dos componentes do complexo P1-N1-P2 por dois juízes com experiência em potenciais evocados. Resultados: Foi obtida a captação do PEAC em todas as crianças em todas as situações de teste, além do que foi possível observar a correlação destes com os testes de percepção auditiva da fala. Foi possível verificar que o registro dos PEAC é um procedimento viável para a avaliação da criança com estimulação bimodal, porém, ainda não há dados suficientes quanto a utilização deste para a avaliação e indicação do IC bilateral.
Resumo:
Introdução: Crianças com transtorno fonológico (TF) apresentam dificuldade na percepção de fala, em processar estímulos acústicos quando apresentados de forma rápida e em sequência. A percepção dos sons complexos da fala, dependem da integridade no processo de codificação analisado pelo Sistema Nervoso Auditivo. Por meio do Potencial Evocado Auditivo de Tronco Encefálico com estímulo complexo (PEATEc) é possível investigar a representação neural dos sons em níveis corticais e obter informações diretas sobre como a estrutura do som da sílaba falada é codificada no sistema auditivo. Porém, acredita-se que esse potencial sofre interferências tanto de processos bottom-up quanto top-down, o que não se sabe é quanto e como cada um desses processos modifica as respostas do PEATEc. Uma das formas de investigar a real influência dos aspectos top-down e bottom-up nos resultados do PEATEc é estimulando separadamente esses dois processos por meio do treinamento auditivo e da terapia fonoaudiológica. Objetivo: Verificar o impacto da estimulação sensorial (processamento bottom-up) e cognitiva (processamento top-down), separadamente, nos diferentes domínios da resposta eletrofisiológica do PEATEc. Método: Participaram deste estudo 11 crianças diagnosticadas com TF, com idades entre 7 e 10:11, submetidas a avaliação comportamental e eletrofisiológica e então dividas nos grupos Bottom-up (B-U) (N=6) e Top-down T-D (N=5). A estimulação bottom-up foi voltada ao treinamento das habilidades sensoriais, através de softwares de computador. A estimulação top-down foi realizada por meio de tarefas para estimular as habilidades cognitiva por meio do Programa de Estimulação Fonoaudiológica (PEF). Ambas as estimulações foram aplicadas uma vez por semana, num período de aproximadamente 45 minutos por 12 semanas. Resultados: O grupo B-U apresentou melhoras em relação aos domínios onset e harmônicos e no valor da pontuação do escore após ser submetido à estimulação bottom-up. Por sua vez, após serem submetidos à estimulação top-down, o grupo T-D apresentou melhoras em relação aos domínios onset, espectro-temporal, fronteiras do envelope e harmônicos e para os valores da pontuação do escore. Conclusão: Diante dos resultados obtidos neste estudo, foi possível observar que a estimulação sensorial (processamento bottom-up) e a estimulação cognitiva (processamento top-down) mostraram impactar de forma diferente a resposta eletrofisiológica do PEATEc
Resumo:
In this paper, we describe an algorithm that automatically detects and labels peaks I - VII of the normal, suprathreshold auditory brainstem response (ABR). The algorithm proceeds in three stages, with the option of a fourth: ( 1) all candidate peaks and troughs in the ABR waveform are identified using zero crossings of the first derivative, ( 2) peaks I - VII are identified from these candidate peaks based on their latency and morphology, ( 3) if required, peaks II and IV are identified as points of inflection using zero crossings of the second derivative and ( 4) interpeak troughs are identified before peak latencies and amplitudes are measured. The performance of the algorithm was estimated on a set of 240 normal ABR waveforms recorded using a stimulus intensity of 90 dBnHL. When compared to an expert audiologist, the algorithm correctly identified the major ABR peaks ( I, III and V) in 96 - 98% of the waveforms and the minor ABR peaks ( II, IV, VI and VII) in 45 - 83% of waveforms. Whilst peak II was correctly identified in only 83% and peak IV in 77% of waveforms, it was shown that 5% of the peak II identifications and 31% of the peak IV identifications came as a direct result of allowing these peaks to be found as points of inflection. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Parkinson's disease (PD) is a common disorder of middle-aged and elderly people, in which there is degeneration of the extra-pyramidal motor system. In some patients, the disease is associated with a range of visual signs and symptoms, including defects in visual acuity, colour vision, the blink reflex, pupil reactivity, saccadic and smooth pursuit movements and visual evoked potentials. In addition, there may be psychophysical changes, disturbances of complex visual functions such as visuospatial orientation and facial recognition, and chronic visual hallucinations. Some of the treatments associated with PD may have adverse ocular reactions. If visual problems are present, they can have an important effect on overall motor function, and quality of life of patients can be improved by accurate diagnosis and correction of such defects. Moreover, visual testing is useful in separating PD from other movement disorders with visual symptoms, such as dementia with Lewy bodies (DLB), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Although not central to PD, visual signs and symptoms can be an important though obscure aspect of the disease and should not be overlooked.
Resumo:
Visual evoked magnetic responses were recorded to full-field and left and right half-field stimulation with three check sizes (70′, 34′ and 22′) in five normal subjects. Recordings were made sequentially on a 20-position grid (4 × 5) based on the inion, by means of a single-channel direct current-Superconducting Quantum Interference Device second-order gradiometer. The topographic maps were consistent on the same subjects recorded 2 months apart. The half-field responses produced the strongest signals in the contralateral hemisphere and were consistent with the cruciform model of the calcarine fissure. Right half fields produced upper-left-quadrant outgoing fields and lower-left-quadrant ingoing fields, while the left half field produced the opposite response. The topographic maps also varied with check size, with the larger checks producing positive or negative maximum position more anteriorly than small checks. In addition, with large checks the full-field responses could be explained as the summation of the two half fields, whereas full-field responses to smaller checks were more unpredictable and may be due to sources located at the occipital pole or lateral surface. In addition, dipole sources were located as appropriate with the use of inverse problem solutions. Topographic data will be vital to the clinical use of the visual evoked field but, in addition, provides complementary information to visual evoked potentials, allowing detailed studies of the visual cortex. © 1992 Kluwer Academic Publishers.
Resumo:
Patients with non-erosive reflux disease (NERD) report symptoms which commonly fail to improve on conventional antireflux therapies. Oesophageal visceral hyperalgaesia may contribute to symptom generation in NERD and we explore this hypothesis using oesophageal evoked potentials. Fifteen endoscopically confirmed NERD patients (four female, 29–56 years) plus 15 matched healthy volunteers (four female, 23–56 years) were studied. All patients had oesophageal manometry/24-h pH monitoring and all subjects underwent evoked potential and sensory testing, using electrical stimulation of the distal oesophagus. Cumulatively, NERD patients had higher sensory thresholds and increased evoked potential latencies when compared to controls (P = 0.01). In NERD patients, there was a correlation between pain threshold and acid exposure as determined by DeMeester score (r = 0.63, P = 0.02), with increased oesophageal sensitivity being associated with lower DeMeester score. Reflux negative patients had lower pain thresholds when compared to both reflux positive patients and controls. Evoked potentials were normal in reflux negative patients but significantly delayed in the reflux positive group (P = 0.01). We demonstrate that NERD patients form a continuum of oesophageal afferent sensitivity with a correlation between the degree of acid exposure and oesophageal pain thresholds. We provide objective evidence that increased oesophageal pain sensitivity in reflux negative NERD is associated with heightened afferent sensitivity as normal latency evoked potential responses could be elicited with reduced afferent input. Increased oesophageal afferent pain sensitivity may play an important role in a subset of NERD and could offer an alternate therapeutic target.
Resumo:
Background & Aims: Esophageal hypersensitivity is thought to be important in the generation and maintenance of symptoms in noncardiac chest pain (NCCP). In this study, we explored the neurophysiologic basis of esophageal hypersensitivity in a cohort of NCCP patients. Methods: We studied 12 healthy controls (9 women; mean age, 37.1 ± 8.7 y) and 32 NCCP patients (23 women; mean age, 47.2 ± 10 y). All had esophageal manometry, esophageal evoked potentials to electrical stimulation, and NCCP patients had 24-hour ambulatory pH testing. Results: The NCCP patients had reduced pain thresholds (PT) (72.1 ± 19.4 vs 54.2 ± 23.6, P = .02) and increased P1 latencies (P1 = 105.5 ± 11.1 vs 118.1 ± 23.4, P = .02). Subanalysis showed that the NCCP group could be divided into 3 distinct phenotypic classifications. Group 1 had reduced pain thresholds in conjunction with normal/reduced latency P1 latencies (n = 9). Group 2 had reduced pain thresholds in conjunction with increased (>2.5 SD) P1 latencies (n = 7), and group 3 had normal pain thresholds in conjunction with either normal (n = 10) or increased (>2.5 SD, n = 3) P1 latencies. Conclusions: Normal esophageal evoked potential latencies with reduced PT, as seen in group 1 patients, is indicative of enhanced afferent transmission and therefore increased esophageal afferent pathway sensitivity. Increased esophageal evoked potential latencies with reduced PT in group 2 patients implies normal afferent transmission to the cortex but heightened secondary cortical processing of this information, most likely owing to psychologic factors such as hypervigilance. This study shows that NCCP patients with esophageal hypersensitivity may be subclassified into distinct phenotypic subclasses based on sensory responsiveness and objective neurophysiologic profiles. © 2006 by the American Gastroenterological Association.
Resumo:
Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.