982 resultados para epithelium cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live attenuated Salmonella are attractive vaccine candidates for mucosal application because they induce both mucosal immune responses and systematic immune responses. After breaking the epithelium barrier, Salmonella typhimurium is found within dendritic cells (DC) in the Peyer's patches. Although there are abundant data on the interaction of S. typhimurium with murine epithelial cells, macrophages and DC, little is known about its interaction with human DC. Live attenuated S. typhimurium have recently been shown to efficiently infect human DC in vitro and induce production of cytokines. In this study, we have analysed the morphological consequences of infection of human DC by the attenuated S. typhimurium mutant strains designated PhoPc, AroA and SipB and the wild-type strains of the American Type Culture Collection (Manassas, VA, USA), ATCC 14028 and ATCC C53, by electron microscopy at 30 min, 3 h and 24 h after exposure. Our results show that genetic background of the strains profoundly influence DC morphology following infection. The changes included (i) membrane ruffling; (ii) formation of tight or spacious phagosomes; (iii) apoptosis; and (iv) spherical, pedunculated membrane-bound microvesicles that project from the plasma membrane. Despite the fact that membrane ruffling was much more pronounced with the two virulent strains, all mutants were taken up by the DC. The microvesicles were induced by all the attenuated strains, including SipB, which did not induce apoptosis in the host cell. These results suggest that Salmonella is internalized by human DC, inducing morphological changes in the DC that could explain immunogenicity of the attenuated strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress, intense light exposure and oxygen imbalances such as hypoxic or hyperoxic conditions perturb mitochondria, nuclear function and further lead to cellular damage of retina and retinal pigment epithelial (RPE) cells. Our major aim is to understand the various biochemical and proteomic events that occur during the progression of retina and RPE cell death. The comprehensive objectives of this dissertation are to understand the functional aspects of protein expression, posttranslational modifications, protein or lipid binding changes, phenotypic, morphological alterations and their regulation during the retina and RPE apoptosis under oxidative stress. The entire study is divided into four chapters Chapter 1 contains introduction and background on apoptotic signaling in retina and RPE cells. In chapter 2, we demonstrated that the oxidative stress biomarker prohibitin shuttles between mitochondria and nucleus as an anti-apoptotic molecule and acts as a transcriptional regulator by altering its lipid binding affinity and by posttranslational modifications during oxidative damage to the retina and RPE. In chapter 3, we demonstrated that oxidative and photo-oxidative stress induced nitric oxide regulates the RPE apoptosis by altering serine/threonine protein phosphatase 2A (PP2A) catalytic subunit, vimentin phosphorylation and Bcl xL expression regulation in the RPE cells in vitro. In chapter 4, we further analyzed the differential expression of prohibitin in the retina and RPE during oxidative stress, diabetic retinopathy (DR) and age-related macular degeneration (AMD) condition. Our analysis of postmortem retinas reveals that prohibitin is significantly increased in aged and AMD retina, and decreased in retinas of human diabetic retinopathy and RPE of AMD. Our study demonstrates that prohibitin levels determine the apoptotic signaling in the retina and RPE during retinal degenerative disease progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: During each oestrous cycle, the mammary gland is subject to changes in ovarian hormone levels. It responds with limited proliferation, differentiation and regression. To understand the processes resulting in these changes, particularly the regulation of cell death, we examined protein levels in mammary epithelium during the oestrous cycle of the Sprague-Dawley rat. METHODS: Studies of serum hormone levels, vaginal smears, uterine weight and morphology, mammary gland morphology, proliferation and apoptotic indices, and protein levels during the stages of the Sprague-Dawley rat oestrous cycle were used to examine the response of mammary epithelium to the oestrous cycle. RESULTS: Proliferation of mammary epithelium was greater in diestrus and proestrus, while apoptosis was increased in metestrus and diestrus. Growth factor-, hormone- and anchorage-mediated cell survival signalling, indicated by activation of Stat5A, FAK and Akt 1 and expression of anti-apoptotic Bcl-2 family members, was greater in proestrus and reduced in metestrus. In contrast, the levels of pro-apoptotic Bcl-2 family members and proteins associated with apoptosis in mammary epithelium (TGFbeta3, pStat3) were increased during metestrus and diestrus. CONCLUSION: Decreases in growth factor, hormone and cell attachment survival signals corresponded with increased apoptosis during the second half of the oestrous cycle. The protein levels detected during oestrus suggest parallels to apoptosis in mammary involution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The family of Eph receptor tyrosine kinases and their membrane bound ligands, the ephrins, are involved in a wide variety of morphogenic processes during embryonic development and adult tissue homeostasis. Receptor-ligand interaction requires direct cell-cell contact and results in forward and reverse signaling originating from the receptor and ligand, respectively. We have previously shown that EphB4 and ephrinB2 are differentially expressed during the development of the adult mammary parenchyma. Overexpression of EphB4 in the mammary epithelium of transgenic mice leads to perturbations in mammary epithelial morphology, motility and growth. To investigate the role of ephrinB2 signaling in mammary gland biology, we have established transgenic mice exhibiting conditional ephrinB2 knockout in the mammary epithelium. In homozygote double transgenic CreLox mice, specific knockout of ephrinB2 occurred in the mammary epithelium during the first pregnancy-lactating period. Abolishing ephrinB2 function led to severe interference with the architecture and functioning of the mammary gland at lactation. The morphology of the transgenic lactating glands resembled that of involuting controls, with decreased epithelial cell number and collapsed lobulo-alveolar structures. Accordingly, massive epithelial cell death and expression of involution-specific genes were observed. Interestingly, in parallel to cell death, significant cell proliferation was apparent, suggestive of tissue regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Villous atrophy and increased numbers of intraepithelial T cells in duodenal biopsies represent a hallmark of coeliac disease. In the present study, an attempt has been made to define whether cytotoxic cell subsets are activated in situ in the affected mucosa of susceptible individuals early after ingestion of a gluten-containing diet. Duodenal biopsies from 11 patients with coeliac disease who repeatedly underwent endoscopic biopsy after ingestion of individually dosed amounts of gluten were used for immunohistochemistry and in situ hybridization. To identify the cell subsets expressing perforin mRNA and protein, in situ hybridization and FACS analyses were performed on cells isolated from fresh biopsies. Compared with normal mucosa, the number of intraepithelial lymphocytes containing perforin mRNA and protein increased significantly in tissue samples showing moderate or florid coeliac disease and closely paralleled the severity of morphological alteration, whereas the frequency of perforin-expressing lamina propria lymphocytes increased only moderately. Cells isolated from florid biopsies that expressed perforin mRNA and protein were preferentially T-cell receptor (TCR) alphabeta T cells. The increase in both the absolute number and the percentage of lymphocytes expressing perforin mRNA indicates in situ activation of lymphocytes within the epithelial compartment in florid coeliac disease upon ingestion of a gluten-containing diet in patients predisposed to coeliac disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased levels of NO in exhaled air in association with increased NO synthetase (NOS)2 expression in bronchial epithelial are hallmark features of asthma. It has been suggested that NO contributes to asthma pathogenesis by selective down-regulation of TH1 responses. We demonstrate, however, that NO can reversibly limit in vitro expansion of both human TH1 and TH2 CD4+ T cells. Mechanistically, NO induces cGMP-mediated reversible STAT5 dephosphorylation and therefore interferes with the IL-2R activation cascade. Human bronchial epithelial cells (HBEC) up-regulate NOS2 after stimulation with IFN-gamma secreted by TH1 CD4+ T cells and release NO, which inhibits both TH1 and TH2 cell proliferation. This reversible T cell growth arrest depends on NO because T cell proliferation is completely restored after in vitro blocking of NOS2 on HBEC. HBEC thus drive the effector end of a TH1-controlled feedback loop, which protects airway mucosal tissues at the potential lesional site in asthma from overwhelming CD4+ TH2 (and potentially TH1) responses following allergen exposure. Variations in the efficiency of this feedback loop provides a plausible mechanism to explain why only a subset of atopics sensitized to ubiquitous aeroallergens progress to expression of clinically relevant levels of airways inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to current knowledge, sexual development of the apicomplexan parasite Neospora caninum takes place in the canine intestine. However, to date there is no information on the interaction between the parasite and the canine intestinal epithelium, and, next to the clinical and in vivo research tools, an in vitro model comprised of canine intestinal cells infected with N. caninum would be very helpful for investigations at the cellular level. Following the isolation of cells of neonatal canine duodenum and growth of cell cultures to monolayers for 5-6 days, canine intestinal epithelial cells were exposed to cell culture-derived N. caninum tachyzoites and bradyzoites. The host cells remained viable during in vitro culture for an average of 2 wk. During this time span, N. caninum was found to readily adhere to any surface area of these cells, but infection took mostly place at sites where microvilli-like structures were missing, e.g., at the cell periphery, with tachyzoites exhibiting at least 3-4 times increased invasive capacities compared to bradyzoites. Once intracellular, parasites resided within a parasitophorous vacuole, moved toward the vicinity of the nucleus and the more distal portion of the epithelial cells, and proliferated to form vacuoles of not more than 2-4 parasites, which were surrounded by numerous mitochondria. Immunofluorescence staining and TEM of infected cells showed that the expression of cytokeratins and the structural integrity of desmosomes and tight junctions were not notably altered during infection. Furthermore, no changes could be detected in the alkaline phosphatase activities in cell culture supernatants of infected and noninfected cells. Canine duodenal epithelial cell cultures represent a useful tool for future studies on the characteristics of the intestinal phases of N. caninum infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with many malignant and nonmalignant human diseases. Life-long latent EBV persistence occurs in blood-borne B lymphocytes, while EBV intermittently productively replicates in mucosal epithelia. Although several models have previously been proposed, the mechanism of EBV transition between these two reservoirs of infection has not been determined. In this study, we present the first evidence demonstrating that EBV latently infects a unique subset of blood-borne mononuclear cells that are direct precursors to Langerhans cells and that EBV both latently and productively infects oral epithelium-resident cells that are likely Langerhans cells. These data form the basis of a proposed new model of EBV transition from blood to oral epithelium in which EBV-infected Langerhans cell precursors serve to transport EBV to the oral epithelium as they migrate and differentiate into oral Langerhans cells. This new model contributes fresh insight into the natural history of EBV infection and the pathogenesis of EBV-associated epithelial disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.