982 resultados para enzyme inhibition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Il est actuellement reconnu que l'endothélium vasculaire joue un rôle primordial dans la genèse des maladies cardiovasculaires, notamment l'artériosclérose. Dès lors, il est important de pouvoir investiguer la fonction endothéliale en clinique. Pour ce faire, il est particulièrement simple d'examiner la microcirculation cutanée, car celle-ci est très simplement accessible, de manière non-invasive, par fluxmétrie laser-Doppler. Pratiquement, on mesure l'augmentation du flux sanguin dermique en réponse à des stimuli connus pour agir via l'endothélium vasculaire. Les stimuli endothélium-dépendants les plus courants sont l'interruption temporaire du flux sanguin qui est suivie d'une hyperémie réactive, et l'administration transcutanée d'acétylcholine (Ach) par iontophorèse. La iontophorèse consiste à obtenir le transfert d' une substance ionisée, telle l'Ach, par l'application d'un courant électrique de polarité appropriée. L'objectif du présent travail était de déterminer le rôle des prostaglandines dans ces réponse vasodilatatrices dépendante de l'endothélium, rôle actuellement peu clair. 23 jeunes hommes volontaires non fumeurs et en bonne santé habituelle ont été examinés lors de deux visites séparées par 1 à 3 semaines. Lors de chaque visite, l'hyperémie réactive et la réponse vasodilatatrice à l'Ach ont été déterminées dans la peau de l'avant bras après administration soit d'un placebo, soit d'un inhibiteur de la cyclooxygénase (COX, enzyme qui contrôle la synthèse des prostaglandines). Chez certains sujets, l'inhibiteur était de l'acétylsalicylate de lysine (900 mg par voie intraveineuse). Chez d'autres sujets, il s'agissait d'indométhacine. (75 mg par voie orale). Comme la stimulation nociceptive liée au courant iontophorétique peut influencer la réponse à l'Ach, celle-ci a été déterminée en présence et en l'absence d'anesthésie de surface (crème de lidocaine). La réponse à l'Ach a été obtenue pour 4 doses différentes de cet agent (exprimées sous la forme de la densité de charge iontophorétique appliquée : 0.28, 1.4, 7, et 14 millicoulombs par cm2 de peau exposée). Le flux sanguin dermique était mesuré par imagerie laser-Doppler, une variante de la fluxmétrie laser-Doppler classique permettant l'exploration d'une surface de peau de taille arbitraire. Quelle que soit la condition testée, nous n'avons jamais observé la moindre influence de l'inhibition de la COX sur l'hyperémie réactive, ni sur la réponse à l'Ach. Cette dernière était augmentée significativement par l'anesthésie cutanée, que les sujets aient reçu ou non de l'acétylsalicylate de lysine ou de l'indométhacine . Par exemple, la réponses moyenne (±SD) à la plus haute dose d'Ach (testée sur 6 sujets, et exprimée en unités de perfusion, comme il est d'usage en fluxmétrie laser-Doppler ) était la suivante : en l'absence d'anesthésie : acétylsalicylate de lysine 339 ± 105, placebo 344 ± 68 ; avec l'anesthésie : acétylsalicylate de lysine 453 ± 76 , placebo 452 ± 65 (p * 0.001 pour les effets de l'anesthésie). En conclusion, nos résultats infirment une contribution des prostaglandines à l'hyperémie réactive ou à la vasodilatation induite par l'acétylcholine dans la microcirculation cutanée. Dans ce lit vasculaire, l'anesthésie locale accroît la vasodilatation induite par l'acétylcholine par un mécanisme indépendant des prostaglandines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Studies were performed in normal subjects and in rats to assess the effect of angiotensin converting enzyme (ACE) inhibition on the kallikrein-kinin system. As ACE is identical to kininase II, one of the enzymes physiologically involved in bradykinin degradation, bradykinin may be expected to accumulate during ACE inhibition. 2. A competitive antagonist of bradykinin was used to explore in unanaesthetized rats the contribution of circulating bradykinin to blood pressure control under ACE inhibition. 3. No evidence was found for a role of this vasodilating peptide in the blood pressure lowering effect of acute ACE inhibition. 4. The plasma activity of carboxypeptidase N (= kininase I), another pathway of bradykinin degradation, remained intact during a 1 week course of treatment with an ACE inhibitor in normal subjects. This therefore indicates that bradykinin formed during ACE inhibition can still be metabolized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pro-inflammatory cytokine IL-1β has been shown to promote angiogenesis. It can have a neurotoxic or neuroprotective effect. Here, we have studied the expression of IL-1β in vivo and the effect of the IL-1 receptor antagonist on choroidal neovascularization (CNV) and retinal degeneration (RD). IL-1β expression significantly increased after laser injury (real time PCR) in C57BL/6 mice, in the C57BL/6 Cx3cr1(-/-) model of age-related macular degeneration (enzyme-linked immunoabsorbent assay), and in albino Wistar rats and albino BALB Cx3cr1(+/+) and Cx3cr1(-/-) mice (enzyme-linked immunoabsorbent assay) after light injury. IL-1β was localized to Ly6G-positive, Iba1-negative infiltrating neutrophils in laser-induced CNV as determined by IHC. IL-1 receptor antagonist treatment significantly inhibited CNV but did not affect Iba1-positive macrophage recruitment to the injury site. IL-1β significantly increased endothelial cell outgrowth in aortic ring assay independently of vascular endothelial growth factor, suggesting a direct effect of IL-1β on choroidal endothelial cell proliferation. Inhibition of IL-1β in light- and laser-induced RD models did not alter photoreceptor degeneration in Wistar rats, C57BL/6 mice, or RD-prone Cx3cr1(-/-) mice. Our results suggest that IL-1β inhibition might represent a valuable and safe alternative to inhibition of vascular endothelial growth factor in the control of CNV in the context of concomitant photoreceptor degeneration as observed in age-related macular degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: We previously reported in schizophrenia patients a decreased level of glutathione ([GSH]), the principal non-protein antioxidant and redox regulator, both in cerebrospinal-fluid and prefrontal cortex. To identify possible genetic causation, we studied genes involved in GSH metabolism. Methods: Genotyping: mass spectrometry analysis of polymerase chain reaction (PCR) amplified DNA fragments purified from peripheral blood. Gene expression: real-time PCR of total RNA isolated from fibroblast cultures derived from skin of patients (DSM-IV) and healthy controls (DIGS). Results: Case-control association study of single nucleotide polymorphisms (SNP) from the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) modifier subunit (GCLM) was performed in two populations: Swiss (patients/controls: 40/31) and Danish (349/348). We found a strong association of SNP rs2301022 in GCLM gene (Danish: c2=3.2; P=0.001 after correction for multiple testing). Evidence for GCLM as a risk factor was confirmed in linkage study of NIMH families. Moreover, we observed a decrease in GCLM mRNA levels in patient fibroblasts, consistently with the association study. Interestingly, Dalton and collaborators reported in GCLM knock-out mice an increased feedback inhibition of GCL activity, resulting in 60% decrease of brain [GSH], a situation analogous to patients. These mice also exhibited an increased sensitivity to oxidative stress. Similarly, under oxidative stress conditions, GCL enzymatic activity was also decreased in patient fibroblasts. Conclusions: These results at the genetic and functional levels, combined with observations that GSH deficient models reveal morphological, electrophysiological, and behavioral anomalies analogous to those observed in patients, suggest that GCLM allelic variant is a vulnerability factor for schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: MDL 100,240 (pyrido[2,1-a] [2]benzazepine-4-carboxylic acid,7-[[2-(acetylthio)-1-oxo-3-phenylpropyl]amino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxo, [4S-[4alpha,7alpha(R(*)),12bbeta]]-) is a molecule possessing an inhibiting ability on both angiotensin converting enzyme (ACE) and neutral endopeptidase, the enzyme responsible for atrial natriuretic peptide (ANP) degradation. Such a dual mechanism of action presents a potential clinical interest for the treatment of hypertension and congestive heart failure. OBJECTIVES: To evaluate the bioavailability of MDL 100,240 and its accumulation over repeated oral administration, using ACE inhibition as a surrogate for plasma drug level and determining its profile after oral and i.v. administration. METHODS: First, in an open, one-period, single-dose study, the ACE inhibition profile was characterised following a 12.5 mg MDL 100,240 i.v. infusion. Second, in a three-group, parallel, randomised, double-blind study, each group of four subjects received q.d., over 8 days, 2.5, 10 or 20 mg of MDL 100,240 orally. The ACE inhibition profile was determined on day 1 and day 8. Trough plasma ACE was measured on days 2, 3 and 4. The recovery of ACE activity was monitored up to 72 h after the last dose of MDL 100,240. RESULTS: ACE inhibition profile was similar on day 1 and day 8, and trough inhibition remained unchanged after the 8 days of treatment with 10 mg or 20 mg. Following repeated 2.5-mg ingestion, trough inhibition increased from 33% to 44% after the eighth dose. The oral bioavailability of MDL 100,240 was estimated at 85%, not statistically different from 100%. The accumulation ratio at steady state was estimated at 112%. Expressing the accumulation ratio in terms of half-life, a t(1/2) of 0.31 days or 7. 5 h was estimated. CONCLUSION: MDL 100,240 (oral solution) has a good bioavailability, as estimated by ACE inhibition, and no drug accumulation seems to occur over 8 days with the 10-mg and 20-mg doses, but a slight rise in the trough level is observed with the 2. 5-mg dose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn's disease. However, its role in disease progression remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in inflammatory cells and circulating TNFalpha levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus, NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have therapeutic efficacy in immune-mediated inflammatory disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purified monoclonal antibodies (Mab) produced by 3 hybridomas and reacting with 3 different epitopes of carcinoembryonic antigen (CEA) were used in a solid phase enzyme immunoassay. Two Mabs were physically adsorbed to polystyrene balls and the third Mab was coupled to alkaline phosphatase using the bifunctional reagent N-succinimidyl-3-(2-pyridyldithio)-propionate. During a first incubation, CEA from heat-extracted serum samples was immunoadsorbed to the antibody coated balls. After washing of the balls, bound CEA was detected by a second incubation with the enzyme coupled Mab. The sensitivity of the assay was 0.6 ng per ml of serum. A total of 196 serum samples from patients with various types of carcinoma, with liver cirrhosis, or from healthy blood donors with or without smoking habits, were tested. The results obtained with the monoclonal enzyme immunoassay (M-EIA) were compared with those obtained with perchloric acid extracts of the same serum samples tested by an inhibition radioimmunoassay using conventional goat anti-CEA antiserum. There was an excellent correlation between the two assays. In particular, the new M-EIA gave good results for the detection of tumor recurrences in the follow-up of colon carcinoma patients. However, despite the use of exclusively monoclonal antibodies the new assay detected a similar percentage of slightly elevated CEA values as the conventional assay in patients with non-malignant disease, suggesting that the CEA associated with non-malignant diseases is immunologically identical to the CEA released by colon carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The death receptor Fas is a member of the tumor necrosis factor receptor family; upon interaction with its ligand it efficiently activates caspases and induces apoptosis. Despite abundant Fas surface expression, however, Fas death-signals are frequently interrupted. Many viruses express antiapoptotic proteins, including caspase inhibitors, Bcl-2 homologues and death-effector-domain-containing proteins that are termed FLIPs (FLICE [Fas-associated death-domain-like IL-1beta-converting enzyme]-inhibitory proteins). Cellular homologues of these inhibitors have been identified. Cellular FLIPs structurally resemble caspase-8 except that they lack proteolytic activity. FLIPs are highly expressed in tumor cells, T lymphocytes and healthy, but not injured, myocytes; this suggests a critical role of FLIPs as endogenous modulators of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic intake of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of developing gastrointestinal tumors, in particular colon cancer. Increasing evidence indicates that NSAID exert tumor-suppressive activity on pre-malignant lesions (polyps) in humans and on established experimental tumors in mice. Some of the tumor-suppressive effects of NSAIDs depend on the inhibition of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxane, which is highly expressed in inflammation and cancer. Recent findings indicate that NSAIDs exert their anti-tumor effects by suppressing tumor angiogenesis. The availability of COX-2-specific NSAIDs opens the possibility of using this drug class as anti-angiogenic agents in combination with chemotheapy or radiotherapy for the treatment of human cancer. Here we will briefly review recent advances in the understanding of the mechanism by which NSAIDs suppress tumor angiogenesis and discuss their potential clinical application as anti-cancer agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina.