908 resultados para electromagnetic wave propagation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we consider the problem of guided wave scattering from delamination in laminated composite and further the problem of estimating delamination size and layer-wise location from the guided wave measurement. Damage location and region/size can be estimated from time of flight and wave packet spread, whereas depth information can be obtained from wavenumber modulation in the carrier packet. The key challenge is that these information are highly sensitive to various uncertainties. Variation in reflected and transmitted wave amplitude in a bar due to boundary/interface uncertainty is studied to illustrate such effect. Effect of uncertainty in material parameters on the time of flight are estimated for longitudinal wave propagation. To evaluate the effect of uncertainty in delamination detection, we employ a time domain spectral finite element (tSFEM) scheme where wave propagation is modeled using higher-order interpolation with shape function have spectral convergence properties. A laminated composite beam with layer-wise placement of delamination is considered in the simulation. Scattering due to the presence of delamination is analyzed. For a single delamination, two identical waveforms are created at the two fronts of the delamination, whereas waves in the two sub-laminates create two independent waveforms with different wavelengths. Scattering due to multiple delaminations in composite beam is studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mechanism of wave-seabed interaction has been extensively studied by coastal geotechnical engineers in recent years. Numerous poro-elastic models have been proposed to investigate the mechanism of wave propagation on a seabed in the past. The existing poro-elastic models include drained model, consolidation model, Coulomb-damping model, and full dynamic model. However, to date, the difference between the existing models is unclear. In this paper, the fully dynamic poro-elastic model for the wave-seabed interaction will be derived first. Then, the existing models will be reduced from the proposed fully dynamic model. Based on the numerical comparisons, the applicable range of each model is also clarified for the engineering practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A general solution is presented for water waves generated by an arbitrary movement of the bed (in space and time) in a two-dimensional fluid domain with a uniform depth. The integral solution which is developed is based on a linearized approximation to the complete (nonlinear) set of governing equations. The general solution is evaluated for the specific case of a uniform upthrust or downthrow of a block section of the bed; two time-displacement histories of the bed movement are considered.

An integral solution (based on a linear theory) is also developed for a three-dimensional fluid domain of uniform depth for a class of bed movements which are axially symmetric. The integral solution is evaluated for the specific case of a block upthrust or downthrow of a section of the bed, circular in planform, with a time-displacement history identical to one of the motions used in the two-dimensional model.

Since the linear solutions are developed from a linearized approximation of the complete nonlinear description of wave behavior, the applicability of these solutions is investigated. Two types of non-linear effects are found which limit the applicability of the linear theory: (1) large nonlinear effects which occur in the region of generation during the bed movement, and (2) the gradual growth of nonlinear effects during wave propagation.

A model of wave behavior, which includes, in an approximate manner, both linear and nonlinear effects is presented for computing wave profiles after the linear theory has become invalid due to the growth of nonlinearities during wave propagation.

An experimental program has been conducted to confirm both the linear model for the two-dimensional fluid domain and the strategy suggested for determining wave profiles during propagation after the linear theory becomes invalid. The effect of a more general time-displacement history of the moving bed than those employed in the theoretical models is also investigated experimentally.

The linear theory is found to accurately approximate the wave behavior in the region of generation whenever the total displacement of the bed is much less than the water depth. Curves are developed and confirmed by the experiments which predict gross features of the lead wave propagating from the region of generation once the values of certain nondimensional parameters (which characterize the generation process) are known. For example, the maximum amplitude of the lead wave propagating from the region of generation has been found to never exceed approximately one-half of the total bed displacement. The gross features of the tsunami resulting from the Alaskan earthquake of 27 March 1964 can be estimated from the results of this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. © 2013 American Society of Mechanical Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the major challenges in hig4h-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of non-uniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 45 dB in sound power level due to the non-uniform inflow, farfield noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be 2 blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in non-uniform flow showed that the effects of non-uniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that non-linear, coupled aerodynamic and aeroacoustic computations, such as those presented in this paper, are necessary to assess the propagation through non-uniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. Copyright © 2011 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shock wave lithotripsy is the preferred treatment modality for kidney stones in the United States. Despite clinical use for over twenty-five years, the mechanisms of stone fragmentation are still under debate. A piezoelectric array was employed to examine the effect of waveform shape and pressure distribution on stone fragmentation in lithotripsy. The array consisted of 170 elements placed on the inner surface of a 15 cm-radius spherical cap. Each element was driven independently using a 170 individual pulsers, each capable of generating 1.2 kV. The acoustic field was characterized using a fiber optic probe hydrophone with a bandwidth of 30 MHz and a spatial resolution of 100 μm. When all elements were driven simultaneously, the focal waveform was a shock wave with peak pressures p+ =65±3MPa and p−=−16±2MPa and the −6 dB focal region was 13 mm long and 2 mm wide. The delay for each element was the only control parameter for customizing the acoustic field and waveform shape, which was done with the aim of investigating the hypothesized mechanisms of stone fragmentation such as spallation, shear, squeezing, and cavitation. The acoustic field customization was achieved by employing the angular spectrum approach for modeling the forward wave propagation and regression of least square errors to determine the optimal set of delays. Results from the acoustic field customization routine and its implications on stone fragmentation will be discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, pp 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, pp 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A linear theory for intermediate-frequency [much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies)], long wavelength (in comparison with the ion gyroradius and the electron skin depth) electromagnetic waves in a multicomponent, homogeneous electron-ion-dust magnetoplasma is presented. For this purpose, the generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived for the case with immobile charged dust macroparticles. The GH-MHD equations in a quasineutral plasma consist of the ion continuity equation, the generalized ion momentum equation, and Faraday's law with the Hall term. The GH-MHD equations are Fourier transformed and combined to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma. (C) 2005 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall- magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency. © 2013 IOP Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective. Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0wave propagation mechanism and the CRW interaction. The behaviour of the Charney modes and the first neutral branch, which rely on tropospheric PV gradients, are arguably more applicable to the atmosphere than modes of the Eady model where the positive PV gradient exists only at the tropopause