374 resultados para electroencephalography
Resumo:
PURPOSE: Patients with magnetic resonance (MR)-negative focal epilepsy (MRN-E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60-90%). Patients with extratemporal MRN-E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI. METHODS: We carried out ESI in 10 operated patients with nonlesional MRI and a postsurgical follow-up of at least 1 year. Five of the 10 patients had extratemporal lobe epilepsy. Evaluation comprised surface and intracranial EEG monitoring of ictal and interictal events, structural MRI, [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET), ictal and interictal perfusion single photon emission computed tomography (SPECT) scans. Eight of the 10 patients also underwent intracranial monitoring. RESULTS: ESI correctly localized the epileptic focus within the resection margins in 8 of 10 patients, 9 of whom experienced favorable postsurgical outcomes. DISCUSSION: The results highlight the diagnostic value of ESI and encourage broadening its application to patients with MRN-E. If the surface EEG contains fairly localized spikes, ESI contributes to the presurgical decision process.
Resumo:
Purpose of reviewTherapeutic hypothermia and aggressive management of postresuscitation disease considerably improved outcome after adult cardiac arrest over the past decade. However, therapeutic hypothermia alters prognostic accuracy. Parameters for outcome prediction, validated by the American Academy of Neurology before the introduction of therapeutic hypothermia, need further update.Recent findingsTherapeutic hypothermia delays the recovery of motor responses and may render clinical evaluation unreliable. Additional modalities are required to predict prognosis after cardiac arrest and therapeutic hypothermia. Electroencephalography (EEG) can be performed during therapeutic hypothermia or shortly thereafter; continuous/reactive EEG background strongly predicts good recovery from cardiac arrest. On the contrary, unreactive/spontaneous burst-suppression EEG pattern, together with absent N20 on somatosensory evoked potentials (SSEP), is almost 100% predictive of irreversible coma. Therapeutic hypothermia alters the predictive value of serum markers of brain injury [neuron-specific enolase (NSE), S-100B]. Good recovery can occur despite NSE levels >33 mu g/l, thus this cut-off value should not be used to guide therapy. Diffusion MRI may help predicting long-term neurological sequelae of hypoxic-ischemic encephalopathy.SummaryAwakening from postanoxic coma is increasingly observed, despite early absence of motor signs and frank elevation of serum markers of brain injury. A new multimodal approach to prognostication is therefore required, which may particularly improve early prediction of favorable clinical evolution after cardiac arrest.
Resumo:
STUDY OBJECTIVES: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. DESIGN: N/A. SETTING: Animal sleep research laboratory. PARTICIPANTS: Sixty-six C57BL6/J adult mice. INTERVENTIONS: Instrumental sleep disruption at a rate of 60/h during 14 days. MEASUREMENTS AND RESULTS: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. CONCLUSIONS: Chronic SF increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.
Resumo:
PURPOSE OF REVIEW: Multimodal monitoring (MMM) is routinely applied in neurointensive care. Unfortunately, there is no robust evidence on which MMM-derived physiologic variables are the most clinically relevant, how and when they should be monitored, and whether MMM impacts outcome. The complexity is even higher because once the data are continuously collected, interpretation and integration of these complex physiologic events into targeted individualized care is still embryonic. RECENT FINDINGS: Recent clinical investigation mainly focused on intracranial pressure, perfusion of the brain, and oxygen availability along with electrophysiology. Moreover, a series of articles reviewing the available evidence on all the MMM tools, giving practical recommendations for bedside MMM, has been published, along with other consensus documents on the role of neuromonitoring and electroencephalography in this setting. SUMMARY: MMM allows comprehensive exploration of the complex pathophysiology of acute brain damage and, depending on the different configuration of the pathological condition we are treating, the application of targeted individualized care. Unfortunately, we still lack robust evidence on how to better integrate MMM-derived information at the bedside to improve patient management. Advanced informatics is promising and may provide us a supportive tool to interpret physiologic events and guide pathophysiological-based therapeutic decisions.
Resumo:
BACKGROUND: Lack of electroencephalography (EEG) background reactivity during therapeutic hypothermia (TH) has been associated with poor outcome in post-anoxic comatose patients. However, decision on intensive care withdrawal is based on normothermic (NT) evaluations. This study aims at exploring whether patients showing recovery of EEG reactivity in NT after a non-reactive EEG in TH differ from those remaining non-reactive. METHODS: Patients with non-reactive EEG during TH were identified from our prospective registry of consecutive comatose adults admitted after successful resuscitation from CA between April 2009 and June 2014. Variables including neurological examination, serum neuron-specific enolase (NSE), procalcitonin, and EEG features were compared regarding impact on functional outcome at 3 months. RESULTS: Seventy-two of 197 patients (37 %) had a non-reactive EEG background during TH with thirteen (18 %) evolving towards reactivity in NT. Compared to those remaining non-reactive (n = 59), they showed significantly better recovery of brainstem reflexes (p < 0.001), better motor responses (p < 0.001), transitory consciousness improvement (p = 0.008), and a tendency toward lower NSE (p = 0.067). One patient recovering EEG reactivity survived with good functional outcome at 3 months. CONCLUSIONS: Recovery of EEG reactivity from TH to NT seems to distinguish two patients' subgroups regarding early neurological assessment and transitory consciousness improvement, corroborating the role of EEG in providing information about cerebral functions. Understanding these dynamic changes encourages maintenance of intensive support in selected patients even after a non-reactive EEG background in TH, as a small subgroup may indeed recover with good functional outcome.
Resumo:
PURPOSE: To investigate current practices and timing of neurological prognostication in comatose cardiac arrest patients. METHODS: An anonymous questionnaire was distributed to the 8000 members of the European Society of Intensive Care Medicine during September and October 2012. The survey had 27 questions divided into three categories: background data, clinical data, decision-making and consequences. RESULTS: A total of 1025 respondents (13%) answered the survey with complete forms in more than 90%. Twenty per cent of respondents practiced outside of Europe. Overall, 22% answered that they had national recommendations, with the highest percentage in the Netherlands (>80%). Eighty-nine per cent used induced hypothermia (32-34 °C) for comatose cardiac arrest patients, while 11% did not. Twenty per cent had separate prognostication protocols for hypothermia patients. Seventy-nine per cent recognized that neurological examination alone is not enough to predict outcome and a similar number (76%) used additional methods. Intermittent electroencephalography (EEG), brain computed tomography (CT) scan and evoked potentials (EP) were considered most useful. Poor prognosis was defined as cerebral performance category (CPC) 3-5 (58%) or CPC 4-5 (39%) or other (3%). When prognosis was considered poor, 73% would actively withdraw intensive care while 20% would not and 7% were uncertain. CONCLUSION: National recommendations for neurological prognostication after cardiac arrest are uncommon and only one physician out of five uses a separate protocol for hypothermia treated patients. A neurological examination alone was considered insufficient to predict outcome in comatose patients and most respondents advocated a multimodal approach: EEG, brain CT and EP were considered most useful. Uncertainty regarding neurological prognostication and decisions on level of care was substantial.
Resumo:
NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.
Resumo:
BACKGROUND: Recent neuroimaging studies suggest that value-based decision-making may rely on mechanisms of evidence accumulation. However no studies have explicitly investigated the time when single decisions are taken based on such an accumulation process. NEW METHOD: Here, we outline a novel electroencephalography (EEG) decoding technique which is based on accumulating the probability of appearance of prototypical voltage topographies and can be used for predicting subjects' decisions. We use this approach for studying the time-course of single decisions, during a task where subjects were asked to compare reward vs. loss points for accepting or rejecting offers. RESULTS: We show that based on this new method, we can accurately decode decisions for the majority of the subjects. The typical time-period for accurate decoding was modulated by task difficulty on a trial-by-trial basis. Typical latencies of when decisions are made were detected at ∼500ms for 'easy' vs. ∼700ms for 'hard' decisions, well before subjects' response (∼340ms). Importantly, this decision time correlated with the drift rates of a diffusion model, evaluated independently at the behavioral level. COMPARISON WITH EXISTING METHOD(S): We compare the performance of our algorithm with logistic regression and support vector machine and show that we obtain significant results for a higher number of subjects than with these two approaches. We also carry out analyses at the average event-related potential level, for comparison with previous studies on decision-making. CONCLUSIONS: We present a novel approach for studying the timing of value-based decision-making, by accumulating patterns of topographic EEG activity at single-trial level.
Resumo:
BACKGROUND: Transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) can be used to explore the dynamical state of neuronal networks. In patients with epilepsy, TMS can induce epileptiform discharges (EDs) with a stochastic occurrence despite constant stimulation parameters. This observation raises the possibility that the pre-stimulation period contains multiple covert states of brain excitability some of which are associated with the generation of EDs. OBJECTIVE: To investigate whether the interictal period contains "high excitability" states that upon brain stimulation produce EDs and can be differentiated from "low excitability" states producing normal appearing TMS-EEG responses. METHODS: In a cohort of 25 patients with Genetic Generalized Epilepsies (GGE) we identified two subjects characterized by the intermittent development of TMS-induced EDs. The high-excitability in the pre-stimulation period was assessed using multiple measures of univariate time series analysis. Measures providing optimal discrimination were identified by feature selection techniques. The "high excitability" states emerged in multiple loci (indicating diffuse cortical hyperexcitability) and were clearly differentiated on the basis of 14 measures from "low excitability" states (accuracy = 0.7). CONCLUSION: In GGE, the interictal period contains multiple, quasi-stable covert states of excitability a class of which is associated with the generation of TMS-induced EDs. The relevance of these findings to theoretical models of ictogenesis is discussed.
Resumo:
The Commission on Classification and Terminology and the Commission on Epidemiology of the International League Against Epilepsy (ILAE) have charged a Task Force to revise concepts, definition, and classification of status epilepticus (SE). The proposed new definition of SE is as follows: Status epilepticus is a condition resulting either from the failure of the mechanisms responsible for seizure termination or from the initiation of mechanisms, which lead to abnormally, prolonged seizures (after time point t1 ). It is a condition, which can have long-term consequences (after time point t2 ), including neuronal death, neuronal injury, and alteration of neuronal networks, depending on the type and duration of seizures. This definition is conceptual, with two operational dimensions: the first is the length of the seizure and the time point (t1 ) beyond which the seizure should be regarded as "continuous seizure activity." The second time point (t2 ) is the time of ongoing seizure activity after which there is a risk of long-term consequences. In the case of convulsive (tonic-clonic) SE, both time points (t1 at 5 min and t2 at 30 min) are based on animal experiments and clinical research. This evidence is incomplete, and there is furthermore considerable variation, so these time points should be considered as the best estimates currently available. Data are not yet available for other forms of SE, but as knowledge and understanding increase, time points can be defined for specific forms of SE based on scientific evidence and incorporated into the definition, without changing the underlying concepts. A new diagnostic classification system of SE is proposed, which will provide a framework for clinical diagnosis, investigation, and therapeutic approaches for each patient. There are four axes: (1) semiology; (2) etiology; (3) electroencephalography (EEG) correlates; and (4) age. Axis 1 (semiology) lists different forms of SE divided into those with prominent motor systems, those without prominent motor systems, and currently indeterminate conditions (such as acute confusional states with epileptiform EEG patterns). Axis 2 (etiology) is divided into subcategories of known and unknown causes. Axis 3 (EEG correlates) adopts the latest recommendations by consensus panels to use the following descriptors for the EEG: name of pattern, morphology, location, time-related features, modulation, and effect of intervention. Finally, axis 4 divides age groups into neonatal, infancy, childhood, adolescent and adulthood, and elderly.
Resumo:
Nervous system involvement in Lyme disease often mimics other conditions and thus represents a diagnostic challenge, especially in an emergency department setting. We report a case of a female teenager presenting with sudden-onset aphasia and transient right-sided faciobrachial hemiplegia, along with headache and agitation. Ischemia, vasculitis, or another structural lesion was excluded by brain imaging. Toxicologic evaluation results were negative. Cerebral perfusion computed tomography and electroencephalography showed left parietotemporal brain dysfunction. Lumbar puncture result, although atypical, suggested bacterial infection and intravenous ceftriaxone was initiated. Finally, microbiological cerebrospinal fluid analysis revealed Lyme neuroborreliosis, showing specific intrathecal antibody production and high level of C-X-C motif chemokine 13. The patient rapidly recovered. To our knowledge, this report for the first time illustrates that acute-onset language and motor symptoms may be directly related to Lyme neuroborreliosis. Neuroborreliosis may mimic other acute neurologic events such as stroke and should be taken into diagnostic consideration even in the absence of classic symptoms and evolution.
Resumo:
INTRODUCTION: The aim of this study was to evaluate if there is a significant effect of lunar phases on subjective and objective sleep variables in the general population. METHODS: A total of 2125 individuals (51.2% women, age 58.8 ± 11.2 years) participating in a population-based cohort study underwent a complete polysomnography (PSG) at home. Subjective sleep quality was evaluated by a self-rating scale. Sleep electroencephalography (EEG) spectral analysis was performed in 759 participants without significant sleep disorders. Salivary cortisol levels were assessed at awakening, 30 min after awakening, at 11 am, and at 8 pm. Lunar phases were grouped into full moon (FM), waxing/waning moon (WM), and new moon (NM). RESULTS: Overall, there was no significant difference between lunar phases with regard to subjective sleep quality. We found only a nonsignificant (p = 0.08) trend toward a better sleep quality during the NM phase. Objective sleep duration was not different between phases (FM: 398 ± 3 min, WM: 402 ± 3 min, NM: 403 ± 3 min; p = 0.31). No difference was found with regard to other PSG-derived parameters, EEG spectral analysis, or in diurnal cortisol levels. When considering only subjects with apnea/hypopnea index of <15/h and periodic leg movements index of <15/h, we found a trend toward shorter total sleep time during FM (FM: 402 ± 4, WM: 407 ± 4, NM: 415 ± 4 min; p = 0.06) and shorter-stage N2 duration (FM: 178 ± 3, WM: 182 ± 3, NM: 188 ± 3 min; p = 0.05). CONCLUSION: Our large population-based study provides no evidence of a significant effect of lunar phases on human sleep.
Resumo:
Brain injury is frequently observed after sepsis and may be primarily related to the direct effects of the septic insult on the brain (e.g., brain edema, ischemia, seizures) or to secondary/indirect injuries (e.g., hypotension, hypoxemia, hypocapnia, hyperglycemia). Management of brain injury in septic patients is first focused to exclude structural intracranial complications (e.g., ischemic/hemorrhagic stroke) and possible confounders (e.g., electrolyte alterations or metabolic disorders, such as dysglycemia). Sepsis-associated brain dysfunction is frequently a heterogeneous syndrome. Despite increasing understanding of main pathophysiologic determinants, therapy is essentially limited to protect the brain against further cerebral damage, by way of "simple" therapeutic manipulations of cerebral perfusion and oxygenation and by avoiding over-sedation. Non-invasive monitoring of cerebral perfusion and oxygenation with transcranial Doppler (TCD) and near-infrared spectroscopy (NIRS) is feasible in septic patients. Electroencephalography (EEG) allows detection of sepsis-related seizures and holds promise also as sedation monitoring. Brain CT-scan detects intra-cerebral structural lesions, while magnetic resonance imaging (MRI) provides important insights into primary mechanisms of sepsis-related direct brain injury, (e.g., cytotoxic vs. vasogenic edema) and the development of posterior reversible encephalopathy. Together with EEG and evoked potentials (EP), MRI is also important for coma prognostication. Emerging clinical evidence suggests monitoring of the brain in septic patients can be implemented in the ICU. The objective of this review was to summarize recent clinical data about the role of brain monitoring - including TCD, NIRS, EEG, EP, CT, and MRI - in patients with sepsis and to illustrate its potential utility for the diagnosis, management and prognostication.
Resumo:
We all make decisions of varying levels of importance every day. Because making a decision implies that there are alternative choices to be considered, almost all decision involves some conflicts or dissatisfaction. Traditional economic models esteem that a person must weight the positive and negative outcomes of each option, and based on all these inferences, determines which option is the best for that particular situation. However, individuals rather act as irrational agents and tend to deviate from these rational choices. They somewhat evaluate the outcomes' subjective value, namely, when they face a risky choice leading to losses, people are inclined to have some preference for risk over certainty, while when facing a risky choice leading to gains, people often avoid to take risks and choose the most certain option. Yet, it is assumed that decision making is balanced between deliberative and emotional components. Distinct neural regions underpin these factors: the deliberative pathway that corresponds to executive functions, implies the activation of the prefrontal cortex, while the emotional pathway tends to activate the limbic system. These circuits appear to be altered in individuals with ADHD, and result, amongst others, in impaired decision making capacities. Their impulsive and inattentive behaviors are likely to be the cause of their irrational attitude towards risk taking. Still, a possible solution is to administrate these individuals a drug treatment, with the knowledge that it might have several side effects. However, an alternative treatment that relies on cognitive rehabilitation might be appropriate. This project was therefore aimed at investigate whether an intensive working memory training could have a spillover effect on decision making in adults with ADHD and in age-matched healthy controls. We designed a decision making task where the participants had to select an amount to gamble with the chance of 1/3 to win four times the chosen amount, while in the other cases they could loose their investment. Their performances were recorded using electroencephalography prior and after a one-month Dual N-Back training and the possible near and far transfer effects were investigated. Overall, we found that the performance during the gambling task was modulated by personality factors and by the importance of the symptoms at the pretest session. At posttest, we found that all individuals demonstrated an improvement on the Dual N-Back and on similar untrained dimensions. In addition, we discovered that not only the adults with ADHD showed a stable decrease of the symptomatology, as evaluated by the CAARS inventory, but this reduction was also detected in the control samples. In addition, Event-Related Potential (ERP) data are in favor of an change within prefrontal and parietal cortices. These results suggest that cognitive remediation can be effective in adults with ADHD, and in healthy controls. An important complement of this work would be the examination of the data in regard to the attentional networks, which could empower the fact that complex programs covering the remediation of several executive functions' dimensions is not required, a unique working memory training can be sufficient. -- Nous prenons tous chaque jour des décisions ayant des niveaux d'importance variables. Toutes les décisions ont une composante conflictuelle et d'insatisfaction, car prendre une décision implique qu'il y ait des choix alternatifs à considérer. Les modèles économiques traditionnels estiment qu'une personne doit peser les conséquences positives et négatives de chaque option et en se basant sur ces inférences, détermine quelle option est la meilleure dans une situation particulière. Cependant, les individus peuvent dévier de ces choix rationnels. Ils évaluent plutôt les valeur subjective des résultats, c'est-à-dire que lorsqu'ils sont face à un choix risqué pouvant les mener à des pertes, les gens ont tendance à avoir des préférences pour le risque à la place de la certitude, tandis que lorsqu'ils sont face à un choix risqué pouvant les conduire à un gain, ils évitent de prendre des risques et choisissent l'option la plus su^re. De nos jours, il est considéré que la prise de décision est balancée entre des composantes délibératives et émotionnelles. Ces facteurs sont sous-tendus par des régions neurales distinctes: le chemin délibératif, correspondant aux fonctions exécutives, implique l'activation du cortex préfrontal, tandis que le chemin émotionnel active le système limbique. Ces circuits semblent être dysfonctionnels chez les individus ayant un TDAH, et résulte, entre autres, en des capacités de prise de décision altérées. Leurs comportements impulsifs et inattentifs sont probablement la cause de ces attitudes irrationnelles face au risque. Cependant, une solution possible est de leur administrer un traitement médicamenteux, en prenant en compte les potentiels effets secondaires. Un traitement alternatif se reposant sur une réhabilitation cognitive pourrait être appropriée. Le but de ce projet est donc de déterminer si un entrainement intensif de la mémoire de travail peut avoir un effet sur la prise de décision chez des adultes ayant un TDAH et chez des contrôles sains du même âge. Nous avons conçu une tâche de prise de décision dans laquelle les participants devaient sélectionner un montant à jouer en ayant une chance sur trois de gagner quatre fois le montant choisi, alors que dans l'autre cas, ils pouvaient perdre leur investissement. Leurs performances ont été enregistrées en utilisant l'électroencéphalographie avant et après un entrainement d'un mois au Dual N-Back, et nous avons étudié les possibles effets de transfert. Dans l'ensemble, nous avons trouvé au pré-test que les performances au cours du jeu d'argent étaient modulées par les facteurs de personnalité, et par le degré des sympt^omes. Au post-test, nous avons non seulement trouvé que les adultes ayant un TDAH montraient une diminutions stable des symptômes, qui étaient évalués par le questionnaire du CAARS, mais que cette réduction était également perçue dans l'échantillon des contrôles. Les rsultats expérimentaux mesurés à l'aide de l'éléctroencéphalographie suggèrent un changement dans les cortex préfrontaux et pariétaux. Ces résultats suggèrent que la remédiation cognitive est efficace chez les adultes ayant un TDAH, mais produit aussi un effet chez les contrôles sains. Un complément important de ce travail pourrait examiner les données sur l'attention, qui pourraient renforcer l'idée qu'il n'est pas nécessaire d'utiliser des programmes complexes englobant la remédiation de plusieurs dimensions des fonctions exécutives, un simple entraiment de la mémoire de travail devrait suffire.
Resumo:
OBJECTIVE: EEG is widely used to predict outcome in comatose cardiac arrest patients, but its value has been limited by lack of a uniform classification. We used the EEG terminology proposed by the American Clinical Neurophysiology Society (ACNS) to assess interrater variability in a cohort of cardiac arrest patients included in the Target Temperature Management trial. The main objective was to evaluate if malignant EEG-patterns could reliably be identified. METHODS: Full-length EEGs from 103 comatose cardiac arrest patients were interpreted by four EEG-specialists with different nationalities who were blinded for patient outcome. Percent agreement and kappa (κ) for the categories in the ACNS EEG terminology and for prespecified malignant EEG-patterns were calculated. RESULTS: There was substantial interrater agreement (κ 0.71) for highly malignant patterns and moderate agreement (κ 0.42) for malignant patterns. Substantial agreement was found for malignant periodic or rhythmic patterns (κ 0.72) while agreement for identifying an unreactive EEG was fair (κ 0.26). CONCLUSIONS: The ACNS EEG terminology can be used to identify highly malignant EEG-patterns in post cardiac arrest patients in an international context with high reliability. SIGNIFICANCE: The establishment of strict criteria with high transferability between interpreters will increase the usefulness of routine EEG to assess neurological prognosis after cardiac arrest.