960 resultados para electrochemical oxidation
Resumo:
It is reported for the first time that the Pt/TiO2 electrocatalyst was successfully used for the electrocatalytic oxidation of CO in the electrochemical gas sensor with a controlled potential mode. The stability of electrocatalytic activity of the Pt-TiO2 electrocatalyst for the CO oxidation is better than that of Pt.
Resumo:
Oxidation-reduction properties of horseradish peroxidase (HRP) have been investigated by using direct electrochemical methods. Two successive separated distinct one-electron processes of HRP were obtained and the related physiological processes were described. The monolayer coverage of HRP at the electrode surface is about 50 pmol/cm(2). UV-Vis spectrophotometry and stable amperometry prove that the enzyme electrode possesses catalytic activity for H2O2 in the absence of a mediator and it might offer an opportunity to build the third generation of biosensors for analytes, such as H2O2, glucose and cholesterol etc. (C) 1997 Elsevier Science S.A.
Resumo:
Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.
Resumo:
In the cyclic voltammograms of complexes with periodate and tellurate, the anodic and cathodic peaks were observed evidently for Cu(III)/Cu(II) couples in caustic potash aqueous solutions. Copper(III) complexes were obtained by utilizing ozone as oxidant
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
A comparative study between a classic and a wireless electrochemical promotion experiment was undertaken as a tool towards the better understanding of both systems. The catalytic modification of a platinum catalyst for ethylene oxidation was studied. The catalyst was supported on yttria-stabilised-zirconia (YSZ), a known pure oxide ion conductor, for the classic experiment and La 0.6Sr0.4Co0.2Fe0.8O 3-δ-a mixed oxide ion electronic conductor-was used for the wireless experiment. The two systems showed certain similarities in terms of the reaction classification (in both cases electrophobic behaviour was observed) and the promotion mechanism. Significant difference was observed in the time scales and the reversibility of the induced rate modification. © 2008 Springer Science+Business Media B.V.
Resumo:
Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.
Resumo:
A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)