931 resultados para electric field screening


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation presented at Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa to obtain the Degree of Master in Chemical and Biochemical Engineering

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal. The SE was first verified by Kelvin in 1887. Since then many researchers developed work on the subject and presently a comprehensive physical model, based on the Maxwell equations, is well established. The Maxwell formalism plays a fundamental role in the electromagnetic theory. These equations lead to the derivation of mathematical descriptions useful in many applications in physics and engineering. Maxwell is generally regarded as the 19th century scientist who had the greatest influence on 20th century physics, making contributions to the fundamental models of nature. The Maxwell equations involve only the integer-order calculus and, therefore, it is natural that the resulting classical models adopted in electrical engineering reflect this perspective. Recently, a closer look of some phenomas present in electrical systems and the motivation towards the development of precise models, seem to point out the requirement for a fractional calculus approach. Bearing these ideas in mind, in this study we address the SE and we re-evaluate the results demonstrating its fractional-order nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation to obtain the degree of master in Bioorganic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adatom-decorated graphene offers a promising new path towards spintronics in the ultrathin limit. We combine experiment and theory to investigate the electronic properties of dilutely fluorinated bilayer graphene, where the fluorine adatoms covalently bond to the top graphene layer. We show that fluorine adatoms give rise to resonant impurity states near the charge neutrality point of the bilayer, leading to strong scattering of charge carriers and hopping conduction inside a field-induced band gap. Remarkably, the application of an electric field across the layers is shown to tune the resonant scattering amplitude from fluorine adatoms by nearly twofold. The experimental observations are well explained by a theoretical analysis combining Boltzmann transport equations and fully quantum-mechanical methods. This paradigm can be generalized to many bilayer graphene-adatom materials, and we envision that the realization of electrically tunable resonance may be a key advantage in graphene-based spintronic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ჩატარებულ იქნა ექსპერიმენტები მუდმივ, ძლიერ ელექტრულ ველებში ქანების ელექტროგამტარობის შესასწავლად. ექსპერიმენტები ტარდებოდა ორელექტროდიანი მეთოდით. ნიმუშები იყო ბაზალტის ან ქვიშაქვის.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ჩატარებულ იქნა ექსპერიმენტები, მუდმივი ელექტრული ველის გავლენის შესასწავლად ელექტრომაგნიტური გამოსხივების (ემგ) სპექტრალურ მახასიათებლებზე, NaCl-ის კრისტალებისათვის.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrogallol, uncatalyzed bromate oscillator, electric field, pulse wave, Belousov-Zhabotinsky reaction, reversal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70) and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until recently, morphotyping, a method evaluating fringe and surface characteristics of streak colonies grown on malt agar, has been recommended as a simple and unexpensive typing method for Candida albicans isolates. The discriminatory power and reproducibility of Hunter's modified scheme of Phongpaichit's morphotyping has been evaluated on 28 C. albicans isolates recovered from the oral cavity of asymptomatic human immunodeficiency virus-positive subjects, and compared to two molecular typing methods: randomly amplified polymorphic DNA (RAPD) fingerprinting, and contour clamped homogeneous electric field (CHEF) electrophoretic karyotyping. Morphological features of streak colonies allowed to distinguish 11 different morphotypes while RAPD fingerprinting yielded 25 different patterns and CHEF electrophoresis recognized 9 karyotypes. The discriminatory power calculated with the formula of Hunter and Gaston was 0.780 for morphotyping, 0.984 for RAPD fingerprinting, and 0.630 for karyotyping. Reproducibility was tested using 43 serial isolates from 15 subjects (2 to 6 isolates per subject) and by repeating the test after one year storage of the isolates. While genetic methods generally recognized a single type for all serial isolates from each of the subjects studied, morphotyping detected strain variations in five subjects in the absence of genetic confirmation. Poor reproducibility was demonstrated repeating morphotyping after one year storage of the isolates since differences in at least one character were detected in 92.9% of the strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Discrimination of species-specific vocalizations is fundamental for survival and social interactions. Its unique behavioral relevance has encouraged the identification of circumscribed brain regions exhibiting selective responses (Belin et al., 2004), while the role of network dynamics has received less attention. Those studies that have examined the brain dynamics of vocalization discrimination leave unresolved the timing and the inter-relationship between general categorization, attention, and speech-related processes (Levy et al., 2001, 2003; Charest et al., 2009). Given these discrepancies and the presence of several confounding factors, electrical neuroimaging analyses were applied to auditory evoked-potential (AEPs) to acoustically and psychophysically controlled non-verbal human and animal vocalizations. This revealed which region(s) exhibit voice-sensitive responses and in which sequence. Methods: Subjects (N=10) performed a living vs. man-made 'oddball' auditory discrimination task, such that on a given block of trials 'target' stimuli occurred 10% of the time. Stimuli were complex, meaningful sounds of 500ms duration. There were 120 different sound files in total, 60 of which represented sounds of living objects and 60 man-made objects. The stimuli that were the focus of the present investigation were restricted to those of living objects within blocks where no response was required. These stimuli were further sorted between human non-verbal vocalizations and animal vocalizations. They were also controlled in terms of their spectrograms and formant distributions. Continuous 64-channel EEG was acquired through Neuroscan Synamps referenced to the nose, band-pass filtered 0.05-200Hz, and digitized at 1000Hz. Peri-stimulus epochs of continuous EEG (-100ms to 900ms) were visually inspected for artifacts, 40Hz low-passed filtered and baseline corrected using the pre-stimulus period . Averages were computed from each subject separately. AEPs in response to animal and human vocalizations were analyzed with respect to differences of Global Field Power (GFP) and with respect to changes of the voltage configurations at the scalp (reviewed in Murray et al., 2008). The former provides a measure of the strength of the electric field irrespective of topographic differences; the latter identifies changes in spatial configurations of the underlying sources independently of the response strength. In addition, we utilized the local auto-regressive average distributed linear inverse solution (LAURA; Grave de Peralta Menendez et al., 2001) to visualize and statistically contrast the likely underlying sources of effects identified in the preceding analysis steps. Results: We found differential activity in response to human vocalizations over three periods in the post-stimulus interval, and this response was always stronger than that to animal vocalizations. The first differential response (169-219ms) was a consequence of a modulation in strength of a common brain network localized into the right superior temporal sulcus (STS; Brodmann's Area (BA) 22) and extending into the superior temporal gyrus (STG; BA 41). A second difference (291-357ms) also followed from strength modulations of a common network with statistical differences localized to the left inferior precentral and prefrontal gyrus (BA 6/45). These two first strength modulations correlated (Spearman's rho(8)=0.770; p=0.009) indicative of functional coupling between temporally segregated stages of vocalization discrimination. A third difference (389-667ms) followed from strength and topographic modulations and was localized to the left superior frontal gyrus (BA10) although this third difference did not reach our spatial criterion of 12 continuous voxels. Conclusions: We show that voice discrimination unfolds over multiple temporal stages, involving a wide network of brain regions. The initial stages of vocalization discrimination are based on modulations in response strength within a common brain network with no evidence for a voice-selective module. The latency of this effect parallels that of face discrimination (Bentin et al., 2007), supporting the possibility that voice and face processes can mutually inform one another. Putative underlying sources (localized in the right STS; BA 22) are consistent with prior hemodynamic imaging evidence in humans (Belin et al., 2004). Our effect over the 291-357ms post-stimulus period overlaps the 'voice-specific-response' reported by Levy et al. (Levy et al., 2001) and the estimated underlying sources (left BA6/45) were in agreement with previous findings in humans (Fecteau et al., 2005). These results challenge the idea that circumscribed and selective areas subserve con-specific vocalization processing.