940 resultados para egg-bearing
Resumo:
Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.
Resumo:
Recently, composite reinforcements in which combinations of materials and material forms such as strips, grids, and strips and anchors, depending on requirements have proven to be effective in various ground improvement applications. Composite geogrids studied in this paper belong to the category of composite reinforcements and are useful for bearing capacity improvement. The paper presents evaluation of results of bearing capacity tests conducted oil a composite geogrid, made of composite reinforcement consisting of steel and cement mortar. The study shows that the behavior of composite reinforcements follows the general trends observed in the case of conventional geogrids, with reference to the depth of first layer below the footing, number of layers of reinforcement, and vertical spacing of the reinforcement. Results show that the performance is comparable to that of a conventional polymer geogrid.
Resumo:
The effect of horizontal earthquake body forces on the bearing capacity of foundations has been examined computationally in a rigorous manner by employing the method of stress characteristics. The bearing capacity factors N-c, N-q and N-y, due to the components of soil cohesion, ground surcharge pressure and soil unit weight respectively, have been plotted as a function of earthquake acceleration coefficient (a(h)) for different values of soil friction angle (phi). The inclusion of earthquake body forces causes a considerable reduction in the bearing capacity factors. The bearing capacity factors N-c and N-q are seen to be approximately of the same magnitude as those reported in the literature on the basis of different solution methods. However, the obtained values of N-y are found to be significantly smaller than the available results. The nature of the pressure distribution along the footing base and the geometry of the observed failure patterns vary with the consideration of earthquake body forces.
Resumo:
Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.
Resumo:
We examine the shear-thinning behaviour of a two dimensional yield stress bearing monolayer of sorbitan tristearate at air/water interface. The flow curve consists of a linear region at low shear stresses/shear rates, followed by a stress plateau at higher values. The velocity profile obtained from particle imaging velocimetry indicates that shear banding occurs, showing coexistence of the fluidized region near the rotor and solid region with vanishing shear-rate away from the rotor. In the fluidized region, the velocity profile, which is linear at low shear rates, becomes exponential at the onset of shear-thinning, followed by a time varying velocity profile in the plateau region. At low values of constant applied shear rates, the viscosity of the film increases with time, thus showing aging behaviour like in soft glassy three-dimensional (3D) systems. Further, at the low values of the applied stress in the yield stress regime, the shear-rate fluctuations in time show both positive and negative values, similar to that observed in sheared 3D jammed systems. By carrying out a statistical analysis of these shear-rate fluctuations, we estimate the effective temperature of the soft glassy monolayer using the Galavatti-Cohen steady state fluctuation relation.
Resumo:
The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.
Resumo:
This paper presents a novel algorithm for compression of single lead Electrocardiogram (ECG) signals. The method is based on Pole-Zero modelling of the Discrete Cosine Transformed (DCT) signal. An extension is proposed to the well known Steiglitz-Hcbride algorithm, to model the higher frequency components of the input signal more accurately. This is achieved by weighting the error function minimized by the algorithm to estimate the model parameters. The data compression achieved by the parametric model is further enhanced by Differential Pulse Code Modulation (DPCM) of the model parameters. The method accomplishes a compression ratio in the range of 1:20 to 1:40, which far exceeds those achieved by most of the current methods.
Resumo:
Condensation reaction involving substituted aminobenzoic acids (2-aminobenzoic acid and 4-aminobenzoic acid) and acetylacetone results in the formation of ketoimines [CH3C(= O)CH2C(CH3)(= NAr)] (Ar = C6H4COOH-4; 1 and C6H4COOH-2 2). Compounds 1 and 2 have been characterized by spectroscopic techniques and by single crystal X-ray diffraction studies. The absorption, emission and lifetime measurement studies have also been performed for the new compounds. While compound 1 forms a linear chain type of aggregation though intermolecular hydrogen bonding, compound 2 forms a discrete dimer in the solid state.
Resumo:
An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.
Resumo:
The Southern Marginal Zone of the Limpopo Complex is composed of granite-greenstone cratonic rocks reworked by a Neoarchean high-grade tectono-metamorphic event. Petrographic and mineral chemical characterization of an Al-Mg granulite from this zone is presented here. The granulite has a gneissic fabric with distinct Al-rich and Si-rich layers, with the former preserving the unusual lamellar (random and regular subparallel) intergrowths of corundum and symplectic intergrowth of spinel with orthopyroxene. The Al-rich layer preserves mineral assemblages such as rutile with orthopyroxene + sillimanite +/- A quartz, Al-rich orthopyroxene (similar to 11 wt%), spinel + quartz, and corundum in possible equilibrium with quartz, while the Si-rich layer preserves antiperthites and orthopyroxene + sillimanite +/- A quartz, all considered diagnostic of ultrahigh-temperature metamorphism. Application of Al-in-opx thermometry, ternary feldspar thermometry and construction of suitable pressure-temperature phase diagrams, compositional and model proportion isopleth results indicate P-T conditions as high as similar to 1,050-1,100 A degrees C, and similar to 10-12 kbars for the Al-Mg granulite. Our report of ultrahigh-temperature conditions is significant considering that the very high temperature was reached during decompression of an otherwise high-pressure granulite complex (clockwise P-T path), whereas most other ultrahigh-temperature granulites are linked to magma underplating at the base of the crust (counterclockwise P-T path).
Resumo:
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footingsoil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in phi, and (iii) becomes almost negligible beyond S/B>3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
By using the axisymmetric quasi-lower bound finite-element limit analysis, the bearing capacity factors N-c(p) and N-gamma q(p) have been computed for axially loaded piles, with the shaft embedded in a fully cohesive soil medium and the tip placed over cohesive frictional soil strata. The results were obtained for various combinations of L/D, phi(l), and c(l)/c(u); the subscripts l and u refer to lower and upper soil strata, respectively. The factors N-c(p) and N-gamma q(p) increase continuously with increases in L/D and phi(l); the rate of increase of N-c(p) and N-gamma q(p) with L/D, however, decreases with an increase in L/D. For c(l)/c(u) > 100, the factor N-c(p) hardly depends on L/D.
Resumo:
By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.