946 resultados para dynamic stochastic general equilibrium models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test the effectiveness of stochastic single-chain models in describing the dynamics of entangled polymers, we systematically compare one such model; the slip-spring model; to a multichain model solved using stochastic molecular dynamics(MD) simulations (the Kremer-Grest model). The comparison involves investigating if the single-chain model can adequately describe both a microscopic dynamical and a macroscopic rheological quantity for a range of chain lengths. Choosing a particular chain length in the slip-spring model, the parameter values that best reproduce the mean-square displacement of a group of monomers is determined by fitting toMDdata. Using the same set of parameters we then test if the predictions of the mean-square displacements for other chain lengths agree with the MD calculations. We followed this by a comparison of the time dependent stress relaxation moduli obtained from the two models for a range of chain lengths. After identifying a limitation of the original slip-spring model in describing the static structure of the polymer chain as seen in MD, we remedy this by introducing a pairwise repulsive potential between the monomers in the chains. Poor agreement of the mean-square monomer displacements at short times can be rectified by the use of generalized Langevin equations for the dynamics and resulted in significantly improved agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combine general equilibrium theory and théorie générale of stochastic processes to derive structural results about equilibrium state prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho fazemos um resumo de alguns artigos que tratam de equilíbrio geral dinâmico com custos de default. Focamos no estudo dos modelos de Kehoe e Levine (1993) e de Alvarez e Jermann (2000). Também descrevemos algumas adaptações do modelo de Alvarez e Jermann, como os trabalhos de Hellwig e Lorenzoni (2009) e de Azariadis e Kaas (2008), e comparamos os resultados desses modelos com os de Huggett (1993), no qual os mercados são exogenamente incompletos. Finalmente, expomos uma falha no algoritmo computacional sugerido por Krueger e Perry (2010) para se computar os equilíbrios estacionários de economias como as de Alvarez e Jermann (2000).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inability of rational expectation models with money supply rules to deliver inflation persistence following a transitory deviation of money growth from trend is due to the rapid adjustment of the price level to expected events. The observation of persistent inflation in macroeconomic data leads many economists to believe that prices adjust sluggishly and/or expectations must not be rational. Inflation persistence in U.S. data can be characterized by a vector autocorrelation function relating inflation and deviations of output from trend. In the vector autocorrelation function both inflation and output are highly persistent and there are significant positive dynamic cross-correlations relating inflation and output. This paper shows that a flexible-price general equilibrium business cycle model with money and a central bank using a Taylor rule can account for these patterns. There are no sticky prices and no liquidity effects. Agents decisions in a period are taken only after all shocks are observed. The monetary policy rule transforms output persistence into inflation persistence and creates positive cross-correlations between inflation and output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to develop stoichiometric equilibrium models that permit the study of parameters effect in the gasification process of a particular feedstock. In total four models were tested in order to determine the syngas composition. One of these four models, called M2, was based on the theoretical equilibrium constants modified by two correction factors determined using published experimental data. The other two models, M3 and M4 were based in correlations, while model M4 was based in correlations to determine the equilibrium constants, model M3 was based in correlations that relate the H-2, CO and CO2 content on the synthesis gas. Model M2 proved to be the more accurate and versatile among these four models, and also showed better results than some previously published models. Also a case study for the gasification of a blend of hardwood chips and glycerol at 80% and 20% respectively, was performed considering equivalence ratios form 0.3 to 0.5, moisture contents from 0%-20% and oxygen percentages in the gasification agent of 100%, 60% and 21%. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: According to the ecological view, coordination establishes byvirtueof social context. Affordances thought of as situational opportunities to interact are assumed to represent the guiding principles underlying decisions involved in interpersonal coordination. It’s generally agreed that affordances are not an objective part of the (social) environment but that they depend on the constructive perception of involved subjects. Theory and empirical data hold that cognitive operations enabling domain-specific efficacy beliefs are involved in the perception of affordances. The aim of the present study was to test the effects of these cognitive concepts in the subjective construction of local affordances and their influence on decision making in football. Methods: 71 football players (M = 24.3 years, SD = 3.3, 21 % women) from different divisions participated in the study. Participants were presented scenarios of offensive game situations. They were asked to take the perspective of the person on the ball and to indicate where they would pass the ball from within each situation. The participants stated their decisions in two conditions with different game score (1:0 vs. 0:1). The playing fields of all scenarios were then divided into ten zones. For each zone, participants were asked to rate their confidence in being able to pass the ball there (self-efficacy), the likelihood of the group staying in ball possession if the ball were passed into the zone (group-efficacy I), the likelihood of the ball being covered safely by a team member (pass control / group-efficacy II), and whether a pass would establish a better initial position to attack the opponents’ goal (offensive convenience). Answers were reported on visual analog scales ranging from 1 to 10. Data were analyzed specifying general linear models for binomially distributed data (Mplus). Maximum likelihood with non-normality robust standard errors was chosen to estimate parameters. Results: Analyses showed that zone- and domain-specific efficacy beliefs significantly affected passing decisions. Because of collinearity with self-efficacy and group-efficacy I, group-efficacy II was excluded from the models to ease interpretation of the results. Generally, zones with high values in the subjective ratings had a higher probability to be chosen as passing destination (βself-efficacy = 0.133, p < .001, OR = 1.142; βgroup-efficacy I = 0.128, p < .001, OR = 1.137; βoffensive convenience = 0.057, p < .01, OR = 1.059). There were, however, characteristic differences in the two score conditions. While group-efficacy I was the only significant predictor in condition 1 (βgroup-efficacy I = 0.379, p < .001), only self-efficacy and offensive convenience contributed to passing decisions in condition 2 (βself-efficacy = 0.135, p < .01; βoffensive convenience = 0.120, p < .001). Discussion: The results indicate that subjectively distinct attributes projected to playfield zones affect passing decisions. The study proposes a probabilistic alternative to Lewin’s (1951) hodological and deterministic field theory and enables insight into how dimensions of the psychological landscape afford passing behavior. Being part of a team, this psychological landscape is not only constituted by probabilities that refer to the potential and consequences of individual behavior, but also to that of the group system of which individuals are part of. Hence, in regulating action decisions in group settings, informers are extended to aspects referring to the group-level. References: Lewin, K. (1951). In D. Cartwright (Ed.), Field theory in social sciences: Selected theoretical papers by Kurt Lewin. New York: Harper & Brothers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the interaction between upstream firms and downstream firms in a two-region general equilibrium model. In many countries, lower tariff rates are set for intermediate manufactured goods and higher tariff rates are set for final manufactured goods. The derived results imply that such settings of tariff rates tend to preserve a symmetric spread of upstream and downstream firms, and continuing tariff reduction may cause core-periphery structures. In the case in which the circular causality between upstream and downstream firms is focused as agglomeration forces, the present model is fully solved. Thus, we find that (1) the present model displays, at most, three interior steady states, (2) when the asymmetric steady-states exist, they are unstable and (3) location displays hysteresis when the transport costs of intermediate manufactured goods are sufficiently high.