294 resultados para droughts
Resumo:
This paper analyzes the economic impacts of summer drought on Swiss grassland production. We combine field trial data from drought experiments in three different grasslands in Switzerland with site-specific information on economic costs and benefits. The analysis focuses on the economic implications of drought effects on grassland yields as well as grassland composition. In agreement with earlier studies, we found rather heterogeneous yield effects of drought on Swiss grassland systems, with significantly reduced yields as a response to drought at the lowland and sub-alpine sites, but increased yields at the wetter pre-alpine site. Relative yield losses were highest at the sub-alpine site (with annual yield losses of up to 37 %). However, because income from grassland production at extensive sites relies to a large extent on ecological direct payments, even large yield losses had only limited implications in terms of relative profit reductions. In contrast, negative drought impacts at the most productive, intensively managed lowland site were dominant, with average annual drought-induced profit margin reductions of about 28 %. This is furthermore emphasized if analyzing the farm level perspective of drought impacts. Combining site-specific effects at the farm level, we found that in particular farms with high shares of lowland grassland sites suffer from summer droughts in terms of farm-level fodder production and profit margins. Moreover, our results showed that the higher competitiveness of weeds (broad-leaved dock) under drought conditions will require increasing attention on weed control measures in future grassland production systems. Taking into account that the risk of drought occurrence is expected to increase in the coming years, additional instruments to cope with drought risks in fodder production and finally farmers’ income have to be developed.
Resumo:
Tajikistan is particularly exposed to the risks of climate change. Its widely degraded landscapes are badly prepared to cope with changes in precipitation patterns, increased temperatures, droughts, and the spread of pests and disease. Sustainable land management (SLM) provides a “basket of opportunities” to address these challenges, particularly for increasing land productivity, improving livelihoods, and protecting ecosystems. Within the Pilot Program for Climate Resilience (PPCR) in Tajikistan 70 SLM technologies and approaches on how to implement SLM were documented with the World Overview of Conservation Approaches and Technologies (WOCAT ) tools in 2011. For this purpose a climate change adaptation module was developed and tested in order to enhance the understanding about climate change resilience of SLM practices and community workshops conducted to on adaptation mechanisms by rural communities in Tajikistan. The analysis came up with four guiding principles for applying SLM for adapting to climate change: 1. Diversification of land use technologies and farm incomes; 2. Intensification of use of natural resources; 3. Expansion of highly productive land use technologies; 4. Protection of land and livelihoods from extreme weather events. Furthermore, SLM must be up-scaled from isolated plots to entire zones or landscapes and the project developed the concept of three concentric villages zones, the in-, near- and off-village zones. Land users, advisors, and decision- and policy makers face the task of finding management practices that best suit site-specific conditions. This task is most efficiently addressed in collaborative effort, and building up and managing a respective knowledge platform.
Resumo:
The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.
Resumo:
Cocoa-based small-scale agriculture is the most important source of income for most farming families in the region of Alto Beni in the sub-humid foothills of the Andes. Cocoa is grown in cultivation systems of varying ecological complexity. The plantations are highly susceptible to climate change impacts. Local cocoa producers mention heat waves, droughts, floods and plant diseases as the main impacts affecting plants and working conditions, and they associate these impacts with global climate change. From a sustainable regional development point of view, cocoa farms need to become more resilient in order to cope with the climate change related effects that are putting cocoa-based livelihoods at risk. This study assesses agroecosystem resilience under three different cocoa cultivation systems (successional agroforestry, simple agroforestry and common practice monocultures). In a first step, farmers’ perceptions of climate change impacts were assessed and eight indicators of agroecological resilience were derived in a transdisciplinary process (focus groups and workshop) based on farmers’ and scientists’ knowledge. These indicators (soil organic matter, depth of Ah horizon, soil bulk density, tree species diversity, crop varieties diversity, ant species diversity, cocoa yields and infestation of cocoa trees with Moniliophthora perniciosa) were then surveyed on 15 cocoa farms and compared for the three different cultivation systems. Parts of the socio-economic aspects of resilience were covered by evaluating the role of cocoa cooperatives and organic certification in transitioning to more resilient cocoa farms (interviews with 15 cocoa farmers combined with five expert interviews). Agroecosystem resilience was higher under the two agroforestry systems than under common practice monoculture, especially under successional agroforestry. Both agroforestry systems achieved higher cocoa yields than common practice monoculture due to agroforestry farmers’ enhanced knowledge regarding cocoa cultivation. Knowledge sharing was promoted by local organizations facilitating organic certification. These organizations were thus found to enhance the social process of farmers’ integration into cooperatives and their reorientation toward organic principles and diversified agroforestry.
Resumo:
The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world's longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century.
Resumo:
Peatlands deform elastically during precipitation cycles by small (+/- 3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4 - 12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m(-2), which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands.
Resumo:
Grassland is an important ecosystem type which is not only used agriculturally, but also covers sites which cannot be used for other purposes, e.g. in very steep locations or above timberlines. Prolonged summer droughts in the mid-term future, as are predicted for Central Europe, are expected to have a major impact on such ecosystems. To address this topic, rainfall exclusion via shelters was performed on three grassland sites at different altitudes (393, 982 and 1978 m above sea level) in Switzerland. Diurnal drought treatment effects were studied at each study site on a completely sunny day towards the end of an 8–10 week shelter period. Ecophysiological parameters including gas exchange (An, gs and intrinsic WUE) and chlorophyll a fluorescence (Fv/Fm, ΦPSII and NPQ) were considered for several species. The lowland and the Alpine field site were more strongly affected by soil drought than the pre-Alpine site. At all sites, grasses showed different patterns of reductions in stomatal conductance under soil drought compared to legumes and forbs. In addition, grasses were significantly more affected by reductions in assimilation rates at all sites. Time courses of reductions in assimilation rates relative to controls differed between species at the Alpine site, as some species showed reduced assimilation rates at this site in the early morning. Thus, similar rainfall exclusion treatments can trigger different reactions in various species at different sites, which might not become obvious during mere midday measurements. Overall, results suggest strong impacts of prolonged summer drought on grassland net photosynthesis especially at the Alpine site and, within sites, for grasses
Resumo:
Occasional strong droughts are an important feature of the climatic environment of tropical rain forest in much of Borneo. This paper compares the response of a lowland dipterocarp forest at Danum, Sabah, in a period of low (LDI) and a period of high (HDI) drought intensity (1986-96, 9.98 y;1996-99, 2.62 y). Mean annual drought intensity was two-fold higher in the HDI than LDI period (1997 v. 976 mm), and each period had one moderately strong main drought (viz. 1992, 1998). Mortality of `all' trees greater than or equal to 10 cm gbh (girth at breast height) and stem growth rates of `small' trees 10less than or equal to50 cm gbh were measured in sixteen 0.16-ha subplots (half on ridge, half on lower slope sites) within two 4-ha plots. These 10-50-cm trees were composed largely of true understorey species. A new procedure was developed to correct for the effect of differences in length of census interval when comparing tree mortality rates. Mortality rates of small trees declined slightly but not significantly between the LDI and HDI periods (1.53 to 1.48% y(-1)): mortality of all trees showed a similar pattern. Relative growth rates declined significantly by 23% from LDI to HDI periods (11.1 to 8.6 mm m(-1) y(-1)): for absolute growth rates the decrease was 28% (2.45 to 1.77 mm y(-1)). Neither mortality nor growth rates were significantly influenced by topography. For small trees, across subplots, absolute growth rate was positively correlated in the LDI period, but negatively correlated in the HDI period, with mortality rate. There was no consistent pattern in the responses among the 19 most abundant species (n greater than or equal to 50 trees) which included a proposed drought-tolerant guild. In terms of tree survival, the forest at Danum was resistant to increasing drought intensity, but showed decreased stem growth attributable to increasing water stress.
Resumo:
The water relations of two tree species in the Euphorbiaceae were compared to test in part a hypothesis that the forest understorey plays an integral role in drought response. At Danum, Sabah, the relatively common species Dimorphocalyx muricatus is associated with ridges whilst another species, Mallotus wrayi, occurs widely both on ridges and lower slopes. Sets of subplots within two 4 -ha permanent plots in this lowland dipterocarp rain forest, were positioned on ridges and lower slopes. Soil water potentials were recorded in 1995-1997, and leaf water potentials were measured on six occasions. Soil water potentials on the ridges (-0.047 MPa) were significantly lower than on the lower slopes (-0.012 MPa), but during the driest period in May 1997 they fell to similarly low levels on both sites (-0.53 MPa). A weighted 40-day accumulated rainfall index was developed to model the soil water potentials. At dry times, D. muricatus (ridge) had significantly higher pre-dawn (-0.21 v. -0.57 MPa) and mid-day (-0.59 v. -1.77 MPa) leaf water potentials than M. wrayi (mean of ridge and lower slope). Leaf osmotic potentials of M. wrayi on the ridges were lower (-1.63 MPa) than on lower slopes (-1.09 MPa), with those for D. muricatus being intermediate (-1.29 MPa): both species adjusted osmotically between wet and dry times. D. muricatus trees were more deeply rooted than M. wrayi trees (97 v. 70 cm). M. wrayi trees had greater lateral root cross-sectional areas than D. muricatus trees although a greater proportion of this sectional area for D. muricatus was further down the soil profile. D. muricatus appeared to maintain relatively high water potentials during dry periods because of its access to deeper water supplies and thus it largely avoided drought effects, but M. wrayi seemed to be more affected yet tolerant of drought and was more plastic in its response. The interaction between water availability and topography determines these species' distributions and provides insights into how rain forests can withstand occasional strong droughts.
Resumo:
We present a 1200 year drought reconstruction for the European Alpine region based on carbon isotope variations of tree rings from living larch trees and historic timber. The carbon isotope fractionation at the study site is sensitive to summer precipitation, temperature, and irradiance, resulting in a stable and high correlation with a drought index for interannual to decadal frequencies and possibly beyond (r(2)=0.58 for 1901-2004, July/August). When combining this information with maximum latewood density-derived summer temperature, a strongly reduced occurrence of summer droughts during the warm A.D. 900-1200 period is evident, coinciding with the Medieval Climate Anomaly (MCA), with a shift to colder and drier conditions for the subsequent centuries. The warm-wet MCA contrasts strongly with the climate of the drought-prone warm phase of the recent decades, indicating different forcing mechanism for these two warm periods and pointing to beneficial conditions for agriculture and human well-being during the MCA in this region.
Resumo:
Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.
Resumo:
Millennial to orbital-scale rainfall changes in the Mediterranean region and corresponding variations in vegetation patterns were the result of large-scale atmospheric reorganizations. In spite of recent efforts to reconstruct this variability using a range of proxy archives, the underlying physical mechanisms have remained elusive. Through the analysis of a new high-resolution sedimentary section from Lake Van (Turkey) along with climate modeling experiments, we identify massive droughts in the Eastern Med- iterranean for the past four glacial cycles, which have a pervasive link with known intervals of enhanced North Atlantic glacial iceberg calving, weaker Atlantic Meridional Overturning Circulation and Dansgaard-Oeschger cold conditions. On orbital timescales, the topographic effect of large Northern Hemisphere ice sheets and periods with minimum insolation seasonality further exacerbated drought intensities by suppressing both summer and winter precipitation.
Resumo:
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440–660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv/Fm, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.
Resumo:
Questions Do extreme dry spells in late summer or in spring affect abundance and species composition of the reproductive shoots and the seed rain in the next annual crop? Are drought effects on reproductive shoots related to the rooting depths of species? Location Species-rich semi-natural grassland at Negrentino, Switzerland. Methods In plots under automated rain-out shelters, rainwater was added to simulate normal conditions and compare them with two experimentally effected long dry spells, in late summer (2004) and in the following spring (2005). For 28 plots, numbers of reproductive shoots per species were counted in 1-m2 areas and seed rain was estimated using nine sticky traps of 102 cm2 after dry spells. Results The two extreme dry spells in late summer and spring were similar in length and their probability of recurrence. They independently reduced the subsequent reproductive output of the community, while their seasonal timing modified its species composition. Compared to drought in spring, drought in late summer reduced soil moisture more and reduced the number of reproductive shoots of more species. The negative effects of summer drought decreased with species’ rooting depth. The shallow-rooted graminoids showed a consistent susceptibility to summer drought, while legumes and other forbs showed more varied responses to both droughts. Spring drought strongly reduced density (–53%) and species richness (–43%) of the community seed rain, while summer drought had only a marginally significant impact on seed density of graminoids (–44%). Reductions in seed number per shoot vs reproductive shoot density distinguished the impacts of drought with respect to its seasonal timing. Conclusion The essentially negative impact of drought in different seasons on reproductive output suggests that more frequent dry spells could contribute to local plant diversity loss by aggravating seed deficiency in species-rich grassland.