907 resultados para distribution change
Resumo:
Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However 'change' is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature. How such changes might affect species interactions is important, not just through the presence or absence of interactions, but also because the patterning of interaction strengths among species is intimately associated with community stability. Interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionally important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We review the best empirical data available detailing the frequency distribution of interaction strengths in communities. We present the underlying (but consistent) pattern of species interactions and discuss the implications of this patterning. We then examine how such a basic pattern might be affected given various scenarios of 'change' and discuss the consequences for community stability and ecosystem functioning.
Resumo:
A conceptual model is described for generating distributions of grazing animals, according to their searching behavior, to investigate the mechanisms animals may use to achieve their distributions. The model simulates behaviors ranging from random diffusion, through taxis and cognitively aided navigation (i.e., using memory), to the optimization extreme of the Ideal Free Distribution. These behaviors are generated from simulation of biased diffusion that operates at multiple scales simultaneously, formalizing ideas of multiple-scale foraging behavior. It uses probabilistic bias to represent decisions, allowing multiple search goals to be combined (e.g., foraging and social goals) and the representation of suboptimal behavior. By allowing bias to arise at multiple scales within the environment, each weighted relative to the others, the model can represent different scales of simultaneous decision-making and scale-dependent behavior. The model also allows different constraints to be applied to the animal's ability (e.g., applying food-patch accessibility and information limits). Simulations show that foraging-decision randomness and spatial scale of decision bias have potentially profound effects on both animal intake rate and the distribution of resources in the environment. Spatial variograms show that foraging strategies can differentially change the spatial pattern of resource abundance in the environment to one characteristic of the foraging strategy.</
Resumo:
The reasons why animal populations decline in response to anthropogenic noise are still poorly understood. To understand how populations are affected by noise, we must understand how individuals are affected by noise. By modifying the acoustic environment experimentally, we studied the potential relationship between noise levels and both spatial and singing behaviour in the European robin (Erithacus rubecula). We found that with increasing noise levels, males were more likely to move away from the noise source and changed their singing behaviour. Our results provide the first experimental evidence in a free ranging species, that not merely the presence of noise causes changes in behaviour and distribution, but that the level of noise pollution plays a crucial role as well. Our results have important implications for estimating the impact of infrastructure which differs in the level of noise produced. Thus, governmental planning bodies should not only consider the physical effect on the landscape when assessing the impact of new infrastructure, but also the noise levels emitted, which may reduce the loss of suitable habitats available for animals. © 2012 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.
Resumo:
It is now accepted that changes in the Earth’s climate are having a profound effect on the distributions of a wide variety of species. One aspect of these changes that has only recently received any attention, however, is their potential effect on levels of within-species genetic diversity. Theoretical, empirical and modelling studies suggest that the impact of trailing-edge population extirpation on range-wide intraspecific diversity will be most pronounced in species that harbour the majority of their genetic variation at low latitudes as a result of changes during the Quaternary glaciations. In the present review, I describe the historical factors that have determined current patterns of genetic variation across the ranges of Northern North Atlantic species, highlight the fact that the majority of these species do indeed harbour a disproportionate level of genetic diversity in rear-edge populations, and outline how combined species distribution modelling and genetic analyses can provide insights into the potential effects of climate change on their overall genetic diversity.
Resumo:
Temporal and spatial patterns of relative sea level (RSL) change in the North of Britain and Ireland during the Holocene are examined. Four episodes, each defined by marked changes in the RSL trend, are identified. Each episode is marked by a rise to a culminating shoreline followed by a fall. Episode HRSL-1 dates from the Younger Dryas to early in the Holocene; HRSL-2 to HRSL-4 occurred later in the Holocene. There is extensive evidence for each episode, and on this basis the spatial distribution of the altitude data for three culminating shorelines and a shoreline formed at the time of the Holocene Storegga Slide tsunami (ca 8110 ± 100 cal. BP) is analysed. Ordinary Kriging is used to determine the general pattern, following which Gaussian Trend Surface Analysis is employed. Recognising that empirical measurements of RSL change can be unevenly distributed spatially, a new approach is introduced which enables the developing pattern to be identified. The patterns for the most widely occurring shorelines were analysed and found to be similar and common centre and axis models were developed for all shorelines. The analyses described provide models of the spatial pattern of Holocene RSL change in the area between ca 8100 cal. BP and ca 1000 cal. BP based on 2262 high resolution shoreline altitude measurements. These models fit the data closely, no shoreline altitude measurement lying more than −1.70 m or +1.82 m from the predicted value. The models disclose a similar pattern to a recently published Glacial Isostatic Adjustment model for present RSL change across the area, indicating that the overall spatial pattern of RSL change may not have varied greatly during the last ca 8000 years.
Resumo:
While the influence of temperature and moisture on the free-living stages of gastrointestinal nematodes have been described in detail, and evidence for global climate change is mounting, there have been only a few attempts to relate altered incidence or seasonal patterns of disease to climate change. Studies of this type have been completed for England Scotland and Wales, but not for Northern Ireland (NI). Here we present an analysis of veterinary diagnostic data that relates three categories of gastrointestinal nematode infection in sheep to historical meteorological data for NI. The infections are: trichostrongylosis/teladorsagiosis (Teladorsagia/Trichostrongylus), strongyloidosis and nematodirosis. This study aims to provide a baseline for future climate change analyses and to provide basic information for the development of nematode control programmes. After identifying and evaluating possible sources of bias, climate change was found to be the most likely explanation for the observed patterns of change in parasite epidemiology, although other hypotheses could not be refuted. Seasonal rates of diagnosis showed a uniform year-round distribution for Teladorsagia and Trichostrongylus infections, suggesting consistent levels of larval survival throughout the year and extension of the traditionally expected seasonal transmission windows. Nematodirosis showed a higher level of autumn than Spring infection, suggesting that suitable conditions for egg and larval development occurred after the Spring infection period. Differences between regions within the Province were shown for strongyloidosis, with peaks of infection falling in the period September-November. For all three-infection categories (trichostrongylosis/teladorsagiosis, strongyloidosis and nematodirosis), significant differences in the rates of diagnosis, and in the seasonality of disease, were identified between regions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Existing climate change mitigation policies are particularly concerned with the reconciliation of two seemingly conflicting aims: environmental protection and economic efficiency. The normative principles underlying these policies meanwhile focus on two central ideas: fair burden-sharing and agents' responsibility. However, both existing policy instruments and their supporting philosophical principles are highly problematic in terms of intergenerational justice and truly effective climate change mitigation. Three competing conceptions for allocating and distributing the burdens of climate change mitigation (cap-and-trade schemes, carbon emission taxes, and personal ecological space quotas) and their compatibility with principles of intra- and intergenerational justice are analysed and evaluated. None of the proposed instruments is able to satisfy the demands of effective mitigation and egalitarian justice on its own, which suggests that existing proposals for the distribution of emission rights and climate change-related costs need to be supported by a thicker account of intergenerational justice.
Resumo:
Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.
Resumo:
Prediction of biotic responses to future climate change in tropical Africa tends to be based on two modelling approaches: bioclimatic species envelope models and dynamic vegetation models. Another complementary but underused approach is to examine biotic responses to similar climatic changes in the past as evidenced in fossil and historical records. This paper reviews these records and highlights the information that they provide in terms of understanding the local- and regional-scale responses of African vegetation to future climate change. A key point that emerges is that a move to warmer and wetter conditions in the past resulted in a large increase in biomass and a range distribution of woody plants up to 400–500 km north of its present location, the so-called greening of the Sahara. By contrast, a transition to warmer and drier conditions resulted in a reduction in woody vegetation in many regions and an increase in grass/savanna-dominated landscapes. The rapid rate of climate warming coming into the current interglacial resulted in a dramatic increase in community turnover, but there is little evidence for widespread extinctions. However, huge variation in biotic response in both space and time is apparent with, in some cases, totally different responses to the same climatic driver. This highlights the importance of local features such as soils, topography and also internal biotic factors in determining responses and resilience of the African biota to climate change, information that is difficult to obtain from modelling but is abundant in palaeoecological records.
Resumo:
Carbon nanotubes can be grown as forests of aligned fibers on a substrate with a catalyst coated prior to or added during synthesis. A major process interruption can initiate the growth of second and successive layers of forest on top or at the base of the existing layers which are thereby lifted up. We report on the generation of multilayer CNT forests where the first forest is generated either by catalyst coinjection (CCI) of ferrocene with hydrocarbon (xylene) or by catalyst predeposition (CPD) of iron followed with hydrocarbon (acetylene). Subsequent layers are then produced by CCI alone to give uniform (all CCI) or mixed (CPD and CCI) structures to study the distribution of the iron catalyst and CNT morphology and to determine whether the CPD forest templates or otherwise influences the growth of subsequent CCI forests. The bottom-up base growth of second and subsequent CCI forests is reaction rate controlled. CCI multilayer forests accumulate catalyst (iron) in a variety of distinct locations. A pre-existing CPD forest modifies subsequent CCI forest initiation, morphology, and catalyst distribution but does not itself accumulate catalyst or change appearance. © 2009 American Chemical Society.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
Ireland provides an interesting case study of the distributional consequences of the Great Recession. To explore such effects we develop a measure of economic vulnerability based on a multidimensional risk profile for income poverty, material deprivation and economic stress. In the context of conflicting expectations of trends in social class differentials, we provide a comparison of pre and post-recession periods. Our analysis reveals a doubling of levels of economic vulnerability and a significant change in multidimensional profiles. Income poverty became less closely associated with material deprivation and economic stress and the degree of polarization between vulnerable and non-vulnerable classes was significantly reduced. Economic vulnerability is highly stratified by social class for both pre and post-recession periods. Focusing on absolute change, the main contrast is between the salariat and the non-agricultural self-employed and the remaining classes; providing some support for notions of polarization. In terms of relative change the higher salariat, the non-agricultural self-employed, the semi-unskilled manual and those who never worked gained relative to the remaining classes. This provides support the notion of ‘middle class squeeze’. The changing relationship between social class and household work intensity reflected a similar pattern. The impact of the latter on economic vulnerability declined sharply, while it came to play an increasing role in mediating the impact of membership of the non-agricultural middle classes. Responding to the political pressures likely to be associated with ‘middle class squeeze’ while sustaining the social welfare arrangements that have traditionally protected the economically vulnerable presents formidable challenges in terms of maintaining social cohesion and political legitimacy.
Resumo:
Urban areas are pivotal to global adaptation and mitigation efforts. But how do cities actually perform in terms of climate change response? This study sheds light on the state of urban climate change adaptation and mitigation planning across Europe. Europe is an excellent test case given its advanced environmental policies and high urbanization. We performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analysed the cities' climate change adaptation and mitigation plans. We investigate the regional distribution of plans, adaptation and mitigation foci and the extent to which planned greenhouse gas (GHG) reductions contribute to national and international climate objectives. To our knowledge, it is the first study of its kind as it does not rely on self-assessment (questionnaires or social surveys). Our results show that 35 % of European cities studied have no dedicated mitigation plan and 72 % have no adaptation plan. No city has an adaptation plan without a mitigation plan. One quarter of the cities have both an adaptation and a mitigation plan and set quantitative GHG reduction targets, but those vary extensively in scope and ambition. Furthermore, we show that if the planned actions within cities are nationally representative the 11 countries investigated would achieve a 37 % reduction in GHG emissions by 2050, translating into a 27 % reduction in GHG emissions for the EU as a whole. However, the actions would often be insufficient to reach national targets and fall short of the 80 % reduction in GHG emissions recommended to avoid global mean temperature rising by 2 °C above pre-industrial levels. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Climate change during the last five decades has impacted significantly on natural ecosystems and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.