818 resultados para distributed simulation pads anonymity tor simulator anonymous cloud computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em Portugal, as instituições de ensino superior dispõem de plataformas de e-learning que reflectem uma mais-valia para o processo de ensino-aprendizagem. No entanto, estas plataformas caracterizam-se por serem de âmbito privado expondo, desta forma, a tímida abertura das instituições na partilha do seu conhecimento, como também dos seus recursos. O paradigma Cloud Computing surge como uma solução, por exemplo, para a criação de uma federação de nuvens capaz de contemplar soluções heterogéneas, garantindo a interoperabilidade entre as plataformas das várias instituições de ensino, e promovendo os objectivos propostos pelo Processo de Bolonha, nomeadamente no que se refere à partilha de informação, de plataformas e serviços e promoção de projectos comuns. Neste âmbito, é necessário desenvolver ferramentas que permitam aos decisores ponderar as mais-valias deste novo paradigma. Assim, é conveniente quantificar o retorno esperado para o investimento, em recursos humanos e tecnológicos, exigido pelo modelo Cloud Computing. Este trabalho contribui para o estudo da avaliação do retorno do investimento (ROI) em infra-estruturas e serviços TIC (Tecnologias de Informação e Comunicação), resultante da análise de diferentes cenários relativos à introdução do paradigma Cloud Computing. Para tal, foi proposta uma metodologia de análise baseada num questionário, distribuído por diversas instituições de ensino superior portuguesas, contendo um conjunto de questões que permitiram identificar indicadores, e respectivas métricas, a usar na elaboração de modelos de estimação do ROI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-based redistribution of their VM’s computational power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the system developed to promote the rational use of electric energy among consumers and, thus, increase the energy efficiency. The goal is to provide energy consumers with an application that displays the energy consumption/production profiles, sets up consuming ceilings, defines automatic alerts and alarms, compares anonymously consumers with identical energy usage profiles by region and predicts, in the case of non-residential installations, the expected consumption/production values. The resulting distributed system is organized in two main blocks: front-end and back-end. The front-end includes user interface applications for Android mobile devices and Web browsers. The back-end provides data storage and processing functionalities and is installed in a cloud computing platform - the Google App Engine - which provides a standard Web service interface. This option ensures interoperability, scalability and robustness to the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação descreve o sistema de apoio à racionalização da utilização de energia eléctrica desenvolvido no âmbito da unidade curricular de Tese/Dissertação. O domínio de aplicação enquadra-se no contexto da Directiva da União Europeia 2006/32/EC que declara ser necessário colocar à disposição dos consumidores a informação e os meios que promovam a redução do consumo e o aumento da eficiência energética individual. O objectivo é o desenvolvimento de uma solução que permita a representação gráfica do consumo/produção, a definição de tectos de consumo, a geração automática de alertas e alarmes, a comparação anónima com clientes com perfil idêntico por região e a previsão de consumo/produção no caso de clientes industriais. Trata-se de um sistema distribuído composto por front-end e back-end. O front-end é composto pelas aplicações de interface com o utilizador desenvolvidas para dispositivos móveis Android e navegadores Web. O back-end efectua o armazenamento e processamento de informação e encontra-se alojado numa plataforma de cloud computing – o Google App Engine – que disponibiliza uma interface padrão do tipo serviço Web. Esta opção assegura interoperabilidade, escalabilidade e robustez ao sistema. Descreve-se em detalhe a concepção, desenvolvimento e teste do protótipo realizado, incluindo: (i) as funcionalidades de gestão e análise de consumo e produção de energia implementadas; (ii) as estruturas de dados; (iii) a base de dados e o serviço Web; e (iv) os testes e a depuração efectuados. (iv) Por fim, apresenta-se o balanço deste projecto e efectuam-se sugestões de melhoria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho foi considerada a possibilidade de incorporar serviços remotos, normalmente associados a serviços web e cloud computing, numa solução local que centralizasse os vários serviços num único sistema e permitisse aos seus utilizadores consumir e configurar os mesmos, quer a partir da rede local, quer remotamente a partir da Internet. Desta forma seria possível conciliar o acesso a partir de qualquer local com internet, característico nas clouds, com a simplicidade de concentrar num só sistema vários serviços que são por norma oferecidos por entidades distintas e ainda permitir aos seus utilizadores o controlo e configuração sobre os mesmos. De forma a validar que este conceito é viável, prático e funcional, foram implementadas duas componentes. Um cliente que corre nos dispositivos dos utilizadores e que proporciona a interface para consumir os serviços disponíveis e um servidor que irá conter e prestar esses serviços aos clientes. Estes serviços incluem lista de contactos, mensagens instantâneas, salas de conversação, transferência de ficheiros, chamadas e conferências de voz e vídeo, pastas remotas, pastas sincronizadas, backups, pastas partilhadas, VoD (Video-on Demand) e AoD (Audio-on Demand). Para o desenvolvimento do cliente e do servidor foi utilizada a framework Qt que recorre à linguagem de programação C++ e ao conjunto de bibliotecas que possui, para o desenvolvimento de aplicações multiplataforma. Para as comunicações entre clientes e servidor, foi utilizado o protocolo XMPP (Extensible Messaging and Presence Protocol), pela forma da biblioteca qxmpp e do servidor XMPP ejabberd. Pelo facto de conter um conjunto de centenas de extensões atualmente ativas que auferem funcionalidades como salas de conversação, transferências de ficheiros e até estabelecer sessões multimédia, graças à sua flexibilidade permitiu ainda a criação de extensões personalizada necessárias para algumas funcionalidades que se pretendeu implementar. Foi ainda utilizado no servidor a framework ffmpeg para suportar algumas funcionalidades multimédia. Após a implementação do cliente para Windows e Linux, e de implementar o servidor em Linux foi realizado um conjunto de testes funcionais para perceber se as funcionalidades e seus mecanismos funcionam corretamente. No caso onde a análise da performance e do consumo de recursos era importante, foram realizados testes de performance e testes de carga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing has been one of the most important topics in Information Technology which aims to assure scalable and reliable on-demand services over the Internet. The expansion of the application scope of cloud services would require cooperation between clouds from different providers that have heterogeneous functionalities. This collaboration between different cloud vendors can provide better Quality of Services (QoS) at the lower price. However, current cloud systems have been developed without concerns of seamless cloud interconnection, and actually they do not support intercloud interoperability to enable collaboration between cloud service providers. Hence, the PhD work is motivated to address interoperability issue between cloud providers as a challenging research objective. This thesis proposes a new framework which supports inter-cloud interoperability in a heterogeneous computing resource cloud environment with the goal of dispatching the workload to the most effective clouds available at runtime. Analysing different methodologies that have been applied to resolve various problem scenarios related to interoperability lead us to exploit Model Driven Architecture (MDA) and Service Oriented Architecture (SOA) methods as appropriate approaches for our inter-cloud framework. Moreover, since distributing the operations in a cloud-based environment is a nondeterministic polynomial time (NP-complete) problem, a Genetic Algorithm (GA) based job scheduler proposed as a part of interoperability framework, offering workload migration with the best performance at the least cost. A new Agent Based Simulation (ABS) approach is proposed to model the inter-cloud environment with three types of agents: Cloud Subscriber agent, Cloud Provider agent, and Job agent. The ABS model is proposed to evaluate the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the execution of the scientific applications, different methods have been proposed to dynamically provide execution environments for such applications that hide the complexity of underlying distributed and heterogeneous infrastructures. Recently virtualization has emerged as a promising technology to provide such environments. Virtualization is a technology that abstracts away the details of physical hardware and provides virtualized resources for high-level scientific applications. Virtualization offers a cost-effective and flexible way to use and manage computing resources. Such an abstraction is appealing in Grid computing and Cloud computing for better matching jobs (applications) to computational resources. This work applies the virtualization concept to the Condor dynamic resource management system by using Condor Virtual Universe to harvest the existing virtual computing resources to their maximum utility. It allows existing computing resources to be dynamically provisioned at run-time by users based on application requirements instead of statically at design-time thereby lay the basis for efficient use of the available resources, thus providing way for the efficient use of the available resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational resources. Grid enables access to the resources but it does not guarantee any quality of service. Moreover, Grid does not provide performance isolation; job of one user can influence the performance of other user’s job. The other problem with Grid is that the users of Grid belong to scientific community and the jobs require specific and customized software environment. Providing the perfect environment to the user is very difficult in Grid for its dispersed and heterogeneous nature. Though, Cloud computing provide full customization and control, but there is no simple procedure available to submit user jobs as in Grid. The Grid computing can provide customized resources and performance to the user using virtualization. A virtual machine can join the Grid as an execution node. The virtual machine can also be submitted as a job with user jobs inside. Where the first method gives quality of service and performance isolation, the second method also provides customization and administration in addition. In this thesis, a solution is proposed to enable virtual machine reuse which will provide performance isolation with customization and administration. The same virtual machine can be used for several jobs. In the proposed solution customized virtual machines join the Grid pool on user request. Proposed solution describes two scenarios to achieve this goal. In first scenario, user submits their customized virtual machine as a job. The virtual machine joins the Grid pool when it is powered on. In the second scenario, user customized virtual machines are preconfigured in the execution system. These virtual machines join the Grid pool on user request. Condor and VMware server is used to deploy and test the scenarios. Condor supports virtual machine jobs. The scenario 1 is deployed using Condor VM universe. The second scenario uses VMware-VIX API for scripting powering on and powering off of the remote virtual machines. The experimental results shows that as scenario 2 does not need to transfer the virtual machine image, the virtual machine image becomes live on pool more faster. In scenario 1, the virtual machine runs as a condor job, so it easy to administrate the virtual machine. The only pitfall in scenario 1 is the network traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las aplicaciones que se distribuyen a través de Internet como un servicio (Software as a service, SaaS) y el hardware y software de base de los centros de datos (Nube, Cloud) son los dos elementos de la ecuación llamada cloud computing. En este paradigma, se juegan tres roles principales: proveedor del cloud, usuario del cloud que a su vez es proveedor de servicio (como los repositorios) y los usuarios finales del servicio. Los primeros se benefician de la especialización y las economías de escala; mientras que los segundos de una mayor elasticidad en el aprovisionamiento. En este sentido, DuraSpace ha creado un piloto llamado DuraCloud para probar el uso de tecnologías de almacenamiento en la nube para la preservación de contenido digital. El taller pretende describir los conceptos básicos del cloud, con ejemplos de donde se está usando este tipo de tecnología; y el impacto que puede tener en los repositorios digitales.