937 resultados para differential expression genes
Resumo:
In this work, we used sugarcane as a model due to its importance for sugar and ethanol production. Unlike the current plant models, sugarcane presents a complex genetics and an enormous allelic variation. Here, we report the analysis of SAGE libraries produced using the shoot apical meristem from contrasted genotypes by flowering induction (non-flowering vs. early-flowering varieties) grown under São Paulo state conditions. The expression pattern was analyzed using samples from São Paulo (SP) and Rio Grande do Norte (RN) states. These results showed that cDNAs identified by SAGE libraries had differential expression only in São Paulo state samples. Furthermore, the cDNA identified CYP (Citocrome P450) was chosen for in silico and genome characterization because it was found in SAGE libraries and subtractive libraries from samples from RN. Phylogenetic trees showed the relationship for these sequences. Furthermore, the qRT-PCR for CYP showed a potential role as flowering indutor for RN samples considering different isophorms. Considering the results present here, it can be consider that CYP gene may be used as molecular marker
Resumo:
A collection of 237,954 sugarcane ESTs was examined in search of signal transduction genes. Over 3,500 components involved in several aspects of signal transduction, transcription, development, cell cycle, stress responses and pathogen interaction were compiled into the Sugarcane Signal Transduction (SUCAST) Catalogue. Sequence comparisons and protein domain analysis revealed 477 receptors, 510 protein kinases, 107 protein phosphatases, 75 small GTPases, 17 G-proteins, 114 calcium and inositol metabolism proteins, and over 600 transcription factors. The elements were distributed into 29 main categories subdivided into 409 sub-categories. Genes with no matches in the public databases and of unknown function were also catalogued. A cDNA microarray was constructed to profile individual variation of plants cultivated in the field and transcript abundance in six plant organs (flowers, roots, leaves, lateral buds, and 1(st) and 4(th) internodes). From 1280 distinct elements analyzed, 217 (17%) presented differential expression in two biological samples of at least one of the tissues tested. A total of 153 genes (12%) presented highly similar expression levels in all tissues. A virtual profile matrix was constructed and the expression profiles were validated by real-time PCR. The expression data presented can aid in assigning function for the sugarcane genes and be useful for promoter characterization of this and other economically important grasses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.
Resumo:
Paracoccidioides brasiliensis is a thermally dimorphic fungus, and causes the most prevalent systemic mycosis in Latin America. Infection is initiated by inhalation of conidia or mycelial fragments by the host, followed by further differentiation into the yeast form. Information regarding gene expression by either form has rarely been addressed with respect to multiple time points of growth in culture. Here, we report on the construction of a genomic DNA microarray, covering approximately 25% of the genome of the organism, and its utilization in identifying genes and gene expression patterns during growth in vitro. Cloned, amplified inserts from randomly sheared genomic DNA (gDNA) and known control genes were printed onto glass slides to generate a microarray of over 12 000 elements. To examine gene expression, mRNA was extracted and amplified from mycelial or yeast cultures grown in semi-defined medium for 5, 8 and 14 days. Principal components analysis and hierarchical clustering indicated that yeast gene expression profiles differed greatly from those of mycelia, especially at earlier time points, and that mycelial gene expression changed less than gene expression in yeasts over time. Genes upregulated in yeasts were found to encode proteins shown to be involved in methionine/cysteine metabolism, respiratory and metabolic processes (of sugars, amino acids, proteins and lipids), transporters (small peptides, sugars, ions and toxins), regulatory proteins and transcription factors. Mycelial genes involved in processes such as cell division, protein catabolism, nucleotide biosynthesis and toxin and sugar transport showed differential expression. Sequenced clones were compared with Histoplasma capsulatum and Coccidioides posadasii genome sequences to assess potentially common pathways across species, such as sulfur and lipid metabolism, amino acid transporters, transcription factors and genes possibly related to virulence. We also analysed gene expression with time in culture and found that while transposable elements and components of respiratory pathways tended to increase in expression with time, genes encoding ribosomal structural proteins and protein catabolism tended to sharply decrease in expression over time, particularly in yeast. These findings expand our knowledge of the different morphological forms of P. brasiliensis during growth in culture.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to compare gene transcription profiles in Longissimus dorsi muscle of the following four hair sheep genetic groups, Morada Nova (MO), Brazilian Somali (SO), Santa Inĉs (SI) and 1/2 Dorper×1/2 Morada Nova (F1). These groups all display different postnatal muscle growth. The transcriptomes of the skeletal muscle of the lambs (at 200 days of age) were profiled by using oligonucleotide microarrays and reverse transcription-quantitative real-time PCR (RT-qPCR). The microarray experiment identified 262 transcripts that were differentially expressed when transcription levels were compared between the different breeds. A total of 23 transcripts among which those involved in skeletal muscle development (MyoD1 and IGFBP4), lipogenesis and adipogenesis (C/EBPδ, PPARγ and PGDS) were differentially expressed in at least in one comparison. Clustering analysis showed that there is greater similarity in gene expression between the MO and SI breeds and between F1 and SO genetic groups. The SO breed has the most distinct expression pattern. The RT-qPCR results confirmed the findings from the microarray study. A positive correlation was observed between the expression of MyoD1 and the cold carcass yield. The negative correlations between the weight and yield of cold carcass with the expression of C/EBPδ mean that the selection for adipogenesis could lead to a lower carcass weight. The GLUT3 and PYGL gene transcripts were negatively correlated with fat thickness, but ATP5G1 was positively correlated with this trait. Interestingly, many genes negatively correlated with PUFA were positively correlated with cold carcass yield. In conclusion, the present work demonstrated that there are breed-specific expression patterns in Brazilian hair sheep genetic groups. The differences in gene expression among genetic groups were consistent with their phenotypic differences. The positive correlation of the MyoD1 expression with the cold carcass yield suggests that this gene is important for tissue growth in sheep. The positive correlation of the C/EBPδ expression with PUFA provides an opportunity to select for lipid deposition in meat animals. © 2012 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coffea canephora is one of the most economically important coffee species and in Brazil, Conilon is the most widely cultivated plant of this species. Abiotic stresses such as temperature variations and drought periods are factors that significantly affect their production and tend to worsen with globally recognized climate changes. In an attempt to understand the molecular responses of coffee plants in water deficit conditions, recent studies have identified candidate genes (CGs) as CcDREB1D. This gene showed increased expression in response to drought in the leaves of clone 14 (drought tolerant) in relation to the clone 22 (sensitive to drought) of C. canephora Conilon. Based on these results, the identification of DREB genes and their subgroups (SGs) of C. canephora, the objective is to analyze in silico and also in vivo these genes expression in leaf and root of tolerant (14, 73 and 120) and sensitive clones (22) of C. canephora Conilon submitted or not to a water deficit. In silico expressions of all DREB genes were analyzed from the Coffee Genome Hub Database and in vivo expression was performed by the technique "reverse transcription-quantitative PCR" (RT-qPCR). In silico gene expression analysis was possible to identify DREB genes with potential responses to abiotic stresses, corroborating some validated in vivo results. In this analysis, several genes showed differential expression in response to drought among the SGs (IIV), the tolerant and sensitive clones and the leaf and root. These differentially expressed genes were identified as potential CGs and among them, it was found that most tolerant clones showed increased expression in relation to sensitive in response to drought, with higher expression levels for clones 14 and 73. These highest levels were observed in leaves compared to the roots and SG-I stood at greater number of genes expressed in response to drought. These results suggest that DREB CGs, as Cc05_g06840, Cc02_g03420 e Cc08_g13960, play an important role in the regulatory mechanisms of response to drought in C. canephora Conilon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)