922 resultados para die-back of wetland plants
Resumo:
Fifty-nine rhizospheric soil samples from twenty different melon farms of Guatemala and Honduras were analysed to study the Fusarium species present in the soil and those developing on roots surfaces.
Resumo:
Species?habitat associations may contribute to the maintenance of species richness in tropical forests, but previous research has been conducted almost exclusively in lowland forests and has emphasized the importance of topography and edaphic conditions. Is the distribution of woody plant species in a Peruvian cloud forest determined by microhabitat conditions? What is the role of environmental characteristics and forest structure in habitat partitioning in a tropical cloud forest? We examined species?habitat associations in three 1-ha plots using the torus-translation method. We used three different criteria to define habitats for habitat partitioning analyses, based on microtopography, forest structure and both sets of factors. The number of species associated either positively or negatively with each habitat was assessed. Habitats defined on the basis of environmental conditions and forest structure discriminated a greater number of positive and negative associations at the scale of our analyses in a tropical cloud forest. Both topographic conditions and forest structure contribute to small-scale microhabitat partitioning of woody plant species in a Peruvian tropical cloud forest. Nevertheless, canopy species were most correlated with the distribution of environmental variables, while understorey species displayed associations with forest structure.
Resumo:
Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas) and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas. Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitats was 75.6 species, and average alpha richness for dehesa sites was 146.3. Gamma richness assessed for the overall dehesa habitat was 340.0 species. The species richness figures of normal dehesa mesohabitat were significantly lesser than of the eutrophic mesohabitat and lesser than the oligotrophic mesohabitat too. No significant differences were found for species richness among dehesa sites. We have found more dissimilarity at local scale (mesohabitat) than at regional scale (habitat). Finally, the results of the similarity assessment between dehesa sites reflected both climatic and biogeographic gradients. Research highlights: An effective conservation of dehesas must take into account local and regional conditions all along their distribution range for ensuring the conservation of the main vascular plant species assemblages as well as the associated fauna
Resumo:
In this paper the power-frequency control of hydropower plants with long penstocks is addressed. In such configuration the effects of pressure waves cannot be neglected and therefore commonly used criteria for adjustment of PID governors would not be appropriate. A second-order Π model of the turbine-penstock based on a lumped parameter approach is considered. A correction factor is introduced in order to approximate the model frequency response to the continuous case in the frequency interval of interest. Using this model, several criteria are analysed for adjusting the PI governor of a hydropower plant operating in an isolated system. Practical criteria for adjusting the PI governor are given. The results are applied to a real case of a small island where the objective is to achieve a generation 100% renewable (wind and hydro). Frequency control is supposed to be provided exclusively by the hydropower plant. It is verified that the usual criterion for tuning the PI controller of isolated hydro plants gives poor results. However, with the new proposed adjustment, the time response is considerably improved
Resumo:
Actual system performance of a PV system can differ from its expected behaviour.. This is the main reason why the performance of PV systems should be monitored, analyzed and, if needed, improved on. Some of the current testing procedures relating to the electrical behaviour of PV systems are appropriated for detecting electrical performance losses, but they are not well-suited to reveal hidden defects in the modules of PV plants and BIPV, which can lead to future losses. This paper reports on the tests and procedures used to evaluate the performance of PV systems, and especially on a novel procedure for quick on-site measurements and defect recognition caused by overheating in PV modules located in operating PV installations.
Resumo:
This paper presents a work whose objective is, first, to quantify the potential of the triticale biomass existing in each of the agricultural regions in the Madrid Community through a crop simulation model based on regression techniques and multiple correlation. Second, a methodology for defining which area has the best conditions for the installation of electricity plants from biomass has been described and applied. The study used a methodology based on compromise programming in a discrete multicriteria decision method (MDM) context. To make a ranking, the following criteria were taken into account: biomass potential, electric power infrastructure, road networks, protected spaces, and urban nuclei surfaces. The results indicate that, in the case of the Madrid Community, the Campiña region is the most suitable for setting up plants powered by biomass. A minimum of 17,339.9 tons of triticale will be needed to satisfy the requirements of a 2.2 MW power plant. The minimum range of action for obtaining the biomass necessary in Campiña region would be 6.6 km around the municipality of Algete, based on Geographic Information Systems. The total biomass which could be made available in considering this range in this region would be 18,430.68 t.
Resumo:
no.7
Resumo:
v.1
Resumo:
v.2
Resumo:
v.3
Resumo:
The plant Mentzelia pumila (family Loasaceae) has leaves and stems densely covered with tiny hooked trichomes. The structures entrap and kill insects and therefore are most probably protective. But they are also maladaptive in that they incapacitate a coccinellid beetle (Hippodamia convergens) that preys upon an aphid enemy (Macrosiphum mentzeliae) of the plant. The adaptive benefit provided by the trichomes is evidently offset by a cost.
Resumo:
Higher plants share with animals a responsiveness to the Ca2+ mobilizing agents inositol 1,4,5-trisphosphate (InsP3) and cyclic ADP-ribose (cADPR). In this study, by using a vesicular 45Ca2+ flux assay, we demonstrate that microsomal vesicles from red beet and cauliflower also respond to nicotinic acid adenine dinucleotide phosphate (NAADP), a Ca2+-releasing molecule recently described in marine invertebrates. NAADP potently mobilizes Ca2+ with a K1/2 = 96 nM from microsomes of nonvacuolar origin in red beet. Analysis of sucrose gradient-separated cauliflower microsomes revealed that the NAADP-sensitive Ca2+ pool was derived from the endoplasmic reticulum. This exclusively nonvacuolar location of the NAADP-sensitive Ca2+ pathway distinguishes it from the InsP3- and cADPR-gated pathways. Desensitization experiments revealed that homogenates derived from cauliflower tissue contained low levels of NAADP (125 pmol/mg) and were competent in NAADP synthesis when provided with the substrates NADP and nicotinic acid. NAADP-induced Ca2+ release is insensitive to heparin and 8-NH2-cADPR, specific inhibitors of the InsP3- and cADPR-controlled mechanisms, respectively. However, NAADP-induced Ca2+ release could be blocked by pretreatment with a subthreshold dose of NAADP, as previously observed in sea urchin eggs. Furthermore, the NAADP-gated Ca2+ release pathway is independent of cytosolic free Ca2+ and therefore incapable of operating Ca2+-induced Ca2+ release. In contrast to the sea urchin system, the NAADP-gated Ca2+ release pathway in plants is not blocked by L-type channel antagonists. The existence of multiple Ca2+ mobilization pathways and Ca2+ release sites might contribute to the generation of stimulus-specific Ca2+ signals in plant cells.
Resumo:
In this paper, we report direct measurement of an influx of extracellular Ca2+ induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca2+-selective vibrating probe. Ca2+ influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca2+ influx in the vicinity of the sperm entry site with a delay of 1.8 ± 0.6 sec. The Ca2+ influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 μm⋅sec−1. Once established, Ca2+ influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmol⋅cm−2⋅sec−1 and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca2+ (c[Ca2+]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca2+ ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca2+ influx. In turn, c[Ca2+] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.
Resumo:
We studied the electronically excited state of the isolated reaction center of photosystem II with high-resolution fluorescence spectroscopy at 5 K and compared the obtained spectral features with those obtained earlier for the primary electron donor. The results show that there is a striking resemblance between the emitting and charge-separating states in the photosystem II reaction center, such as a very similar shape of the phonon wing with characteristic features at 19 and 80 cm−1, almost identical frequencies of a number of vibrational modes, a very similar double-Gaussian shape of the inhomogeneous distribution function, and relatively strong electron-phonon coupling for both states. We suggest that the emission at 5 K originates either from an exciton state delocalized over the inactive branch of the photosystem or from a fraction of the primary electron donor that is long-lived at 5 K. The latter possibility can be explained by a distribution of the free energy difference of the primary charge separation reaction around zero. Both possibilities are in line with the idea that the state that drives primary charge separation in the reaction center of photosystem II is a collective state, with contributions from all chlorophyll molecules in the central part of the complex.