995 resultados para delivery chain
Resumo:
Background: Obesity is epidemic worldwide, and increases in cesarean delivery rates have occurred in parallel. Objective: This study aimed to determine whether cesarean delivery is a risk factor for obesity in adulthood in a birth cohort of Brazilian subjects. Design: We initiated a birth cohort study in Ribeirao Preto, southeastern Brazil, in 1978. A randomly selected sample of 2057 subjects from the original cohort was reassessed in 2002-2004. Type of delivery, birth weight, maternal smoking, and schooling were obtained after birth. The following data from subjects were collected at 23-25 y of age: body mass index (BMI; in kg/m(2)), physical activity, smoking, and income. Obesity was defined as a BMI >= 30. A Poisson multivariable model was performed to determine the association between cesarean delivery and BMI. Results: The obesity rate in adults born by cesarean delivery was 15.2% and in those born by vaginal delivery was 10.4% (P = 0.002). Adults born by cesarean delivery had an increased risk (prevalence ratio: 1.58; 95% CI: 1.23, 2.02) of obesity at adulthood after adjustments. Conclusion: We hypothesize that increasing rates of cesarean delivery may play a role in the obesity epidemic worldwide. Am J Clin Nutr 2011;93:1344-7.
Resumo:
HIV-1-infected patients frequently have opportunistic esophageal infections which, when associated with severe immunodeficiency, can be attributed to unusual pathogens. The clinical presentation of several esophageal diseases is similar and the best method for a specific diagnosis of these patients has not been well defined. To evaluate the role of the polymerase chain reaction (PCR) in the etiologic definition of esophageal ulcers in HIV-1-infected patients, 96 esophageal biopsies from 79 HIV-1-infected patients were processed by PCR using specific primers for cytomegalovirus (CMV), herpes virus (HSV), human papilloma virus (HPV), HIV-1, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Treponema pallidum, and Haemophilus ducreyi. The PCR results were compared to the histopathologic results. Seventy-nine patients were studied (mean age: 34 years; 62% men; median CD4 + T cell = 103.59 cells/mu l (range 1-795.2 cells/mu l). The most common endoscopic findings were as follows: esophageal candidiasis (37.1%), esophageal ulcers (24.7%), esophagitis (11.2%), and lugol-negative areas (10.1%). The histopathologic findings in the esophageal ulcers (22 biopsies) were non-specific inflammation (31.8%), HSV (36.4%), Candida (13.6%), CMV (13.6%), or HPV disease (4.5%). In the esophageal ulcer biopsies, the PCR results were negative in 27.6% of cases, and positive for HIV (65.5%), CMV (31%), HPV (20.7%), HSV (10.3%), and H. ducreyi (6.9%). The histopathologic examination did not identify a pathogen or identified only Candida in 15 biopsies of esophageal ulcers. PCR was positive in ten (66.7%) and negative in five (33.3%) of these biopsies (idiopathic ulcers). PCR detected: HIV (53.3%), CMV (20%), HPV (13.3%), and H. ducreyi (6,7%). PCR detected more etiologic agents in esophageal ulcers than histopathology and was able to detect unusual pathogens. On the other hand, sometimes more than one pathogen was detected in the esophageal ulcers, making it difficult to reach an accurate diagnosis. This finding indicates the need for more studies to evaluate the benefit of this method in the routine evaluation of esophageal ulcer biopsies in HIV-1-infected patients.
Resumo:
Thirteen goat herds and seven sheep flocks in the state of Rio de Janeiro, Brazil were screened for leptospirosis. From the three herds and three flocks with greatest seroreactivity, 19 goats (16 females and three bucks) and 40 sheep (26 ewes and 14 rams) that were seropositive (specific anti-Leptospira titres >= 400, based on a microscopic agglutination test), were selected for more detailed studies. From those animals, samples of vaginal fluids or semen were collected for bacteriological and molecular assays. For both species of animals, the most prevalent reactions were to serovars Hardjo, Shermani, and Grippotyphosa. Although leptospires were detected by darkfield microscopy in three vaginal fluid samples (from two goats and one ewe), pure isolates were not obtained by bacteriological culture of vaginal fluids or semen. However, seven vaginal fluid samples (from four goats and three ewes) and six semen samples (all from rams) were positive on polymerase chain reaction (PCR). Based on these findings, in addition to analogous findings in cattle, we inferred that there is potential for venereal transmission of leptospirosis in small ruminants. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A matricial method to solve the decay chain differential equations system is presented. The quantity of each nuclide in the chain at a time t may be evaluated by analytical expressions obtained in a simple way using recurrence relations. This method may be applied to problems of radioactive buildup and decay and can be easily implemented computationally. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations.
Resumo:
Purpose. In the present study we examined the relationship between solvent uptake into a model membrane (silicone) with the physical properties of the solvents (e.g., solubility parameter, melting point, molecular weight) and its potential predictability. We then assessed the subsequent topical penetration and retention kinetics of hydrocortisone from various solvents to define whether modifications to either solute diffusivity or partitioning were dominant in increasing permeability through solvent-modified membranes. Methods. Membrane sorption of solvents was determined from weight differences following immersion in individual solvents, corrected for differences in density. Permeability and retention kinetics of H-3-hydrocortisone, applied as saturated solutions in the various solvents, were determined over 48 h in horizontal Franz-type glass diffusion cells. Results. Solvent sorption into the membrane could be related to differences in solubility parameters, MW and hydrogen bonding (r(2) = 0.76). The actual and predicted volume of solvent sorbed into the membrane was also found to be linearly related to Log hydrocortisone flux, with changes in both diffusivity and partitioning of hydrocortisone observed for the different solvent vehicles. Conclusions. A simple structure-based predictive model can be applied to the sorption of solvents into silicone membranes. Changes in solute diffusivity and partitioning appeared to contribute to the increased hydrocortisone flux observed with the various solvent vehicles. The application of this predictive model to the more complex skin membrane remains to be determined.
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Epstein–Barr virus (EBV) encephalitis has been reported rarely in the context of solid-organ and bone-marrow transplantation [1]. We report a case of a renal transplant recipient who developed EBV encephalitis following OKT3 therapy for acute allograft rejection. The diagnosis was expedited by the detection of EBV DNA in the cerebrospinal fluid (CSF) by nested polymerase chain reaction (PCR). Moreover, clinical recovery and clearance of CSF EBV DNA appeared to follow the institution of parenteral ganciclovir treatment.
Resumo:
To investigate the efficiency of encapsidation of plasmid by papillomavirus virus-like particles (PV VLPs), and the infectivity of the resultant PV pseudovirions, Cos-1 cells were transfected with an 8-kb plasmid incorporating a green fluorescent protein (GFP) reporter gene (pGSV), and infected with bovine PV (BPV-1) L1/L2 recombinant vaccinia virus to produce BPV1 pseudovirions. Approximately 1 in 1.5x10(4) of dense (1.35 g/ml) PV pseudovirions and 0.3 in 10(4) Of less-dense (1.29 g/ml) pseudovirions packaged an intact pGSV plasmid. The majority (>75%) of packaged plasmids contained deletions, and the deletions affected all tested genes. After exposure of Cos-1 cells to BPV-1 pseudovirions at an MOI of 40,000:1, 6% of cells expressed GFP giving a calculated efficiency of delivery of the pGSV plasmid, by pseudovirions which had packaged an intact plasmid, of approximately 5%. Plasmid delivery was not effected by purified pGSV plasmid, was blocked by antiserum against BPV-1, and was not blocked by DNase treatment of pseudovirions, confirming that delivery was mediated by DNA within the pseudovirion. We conclude that a major limitation to the use of PV pseudovirions as a gene delivery system is that intact plasmid DNA is not efficiently selected for packaging by VLPs in cell-based pseudovirions production systems.
Resumo:
Although there are formidable barriers to the oral delivery of biologically active drugs, considerable progress in the field has been made, using both physical and chemical strategies of absorption enhancement. A possible method to enhance oral absorption is to exploit the phenomenon of lipophilic modification and mono and oligosaccharide conjugation. Depending on the uptake mechanism targeted, different modifications can be employed. To target passive diffusion, lipid modification has been used, whereas the targeting of sugar transport systems has been achieved through drugs conjugated with sugars. These drug delivery units can be specifically tailored to transport a wide variety of poorly absorbed drugs through the skin, and across the barriers that normally inhibit absorption from the gut or into the brain. The delivery system can be conjugated to the drug in such a way as to release the active compound after it has been absorbed (i.e. the drug becomes a prodrug), or to form a biologically stable and active molecule (i.e. the conjugate becomes a new drug moiety). Examples where lipid, sugar and lipid-sugar conjugates have resulted in enhanced drug delivery will be highlighted in this review.