949 resultados para decision tree


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences.Results: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity.Conclusions: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin. © 2013 Dimitrov et al.; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Algorithms for concept drift handling are important for various applications including video analysis and smart grids. In this paper we present decision tree ensemble classication method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with îriginal random forest with incorporated replace-the-looser forgetting andother state-of-the-art concept-drift classiers like AWE2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Sepsis can lead to multiple organ failure and death. Timely and appropriate treatment can reduce in-hospital mortality and morbidity. Objectives: To determine the clinical effectiveness and cost-effectiveness of three tests [LightCycler SeptiFast Test MGRADE® (Roche Diagnostics, Risch-Rotkreuz, Switzerland); SepsiTest™ (Molzym Molecular Diagnostics, Bremen, Germany); and the IRIDICA BAC BSI assay (Abbott Diagnostics, Lake Forest, IL, USA)] for the rapid identification of bloodstream bacteria and fungi in patients with suspected sepsis compared with standard practice (blood culture with or without matrix-absorbed laser desorption/ionisation time-offlight mass spectrometry). Data sources: Thirteen electronic databases (including MEDLINE, EMBASE and The Cochrane Library) were searched from January 2006 to May 2015 and supplemented by hand-searching relevant articles. Review methods: A systematic review and meta-analysis of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. A decision tree was used to estimate the costs and quality-adjusted life-years (QALYs) associated with each test; all other parameters were estimated from published sources. The model was populated with evidence from the systematic review or individual studies, if this was considered more appropriate (base case 1). In a secondary analysis, estimates (based on experience and opinion) from seven clinicians regarding the benefits of earlier test results were sought (base case 2). A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Scenario analyses were used to assess uncertainty. Results: For the review of diagnostic test accuracy, 62 studies of varying methodological quality were included. A meta-analysis of 54 studies comparing SeptiFast with blood culture found that SeptiFast had an estimated summary specificity of 0.86 [95% credible interval (CrI) 0.84 to 0.89] and sensitivity of 0.65 (95% CrI 0.60 to 0.71). Four studies comparing SepsiTest with blood culture found that SepsiTest had an estimated summary specificity of 0.86 (95% CrI 0.78 to 0.92) and sensitivity of 0.48 (95% CrI 0.21 to 0.74), and four studies comparing IRIDICA with blood culture found that IRIDICA had an estimated summary specificity of 0.84 (95% CrI 0.71 to 0.92) and sensitivity of 0.81 (95% CrI 0.69 to 0.90). Owing to the deficiencies in study quality for all interventions, diagnostic accuracy data should be treated with caution. No randomised clinical trial evidence was identified that indicated that any of the tests significantly improved key patient outcomes, such as mortality or duration in an intensive care unit or hospital. Base case 1 estimated that none of the three tests provided a benefit to patients compared with standard practice and thus all tests were dominated. In contrast, in base case 2 it was estimated that all cost per QALY-gained values were below £20,000; the IRIDICA BAC BSI assay had the highest estimated incremental net benefit, but results from base case 2 should be treated with caution as these are not evidence based. Limitations: Robust data to accurately assess the clinical effectiveness and cost-effectiveness of the interventions are currently unavailable. Conclusions: The clinical effectiveness and cost-effectiveness of the interventions cannot be reliably determined with the current evidence base. Appropriate studies, which allow information from the tests to be implemented in clinical practice, are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a multi-class AdaBoost based on incorporating an ensemble of binary AdaBoosts which is organized as Binary Decision Tree (BDT). It is proved that binary AdaBoost is extremely successful in producing accurate classification but it does not perform very well for multi-class problems. To avoid this performance degradation, the multi-class problem is divided into a number of binary problems and binary AdaBoost classifiers are invoked to solve these classification problems. This approach is tested with a dataset consisting of 6500 binary images of traffic signs. Haar-like features of these images are computed and the multi-class AdaBoost classifier is invoked to classify them. A classification rate of 96.7% and 95.7% is achieved for the traffic sign boarders and pictograms, respectively. The proposed approach is also evaluated using a number of standard datasets such as Iris, Wine, Yeast, etc. The performance of the proposed BDT classifier is quite high as compared with the state of the art and it converges very fast to a solution which indicates it as a reliable classifier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En los procesos de mantenimiento y rehabilitación de pavimentos, se deben definir los objetivos, bien sea para realizar unas reparaciones superficiales sobre daños generados por el agua como consecuencia de fallas en los drenajes, o bien realizar una intervención sobre la estructura buscando recuperarla a sus condiciones de diseño originales, la cual se realiza con el proceso de reciclaje el cual tiene en cuenta las características físico-químicas de los materiales existentes los cuales se consideran sufrieron el adecuado proceso que les permitió hacer parte de la estructura. Existiendo cuatro tipos de reciclaje de los cuales se realiza una descripción general de cada proceso, el presente trabajo se concentra en el análisis técnico – económico del proceso ―In situ‖ en frio, método utilizado en la rehabilitación de la vía Sopetrán - Puente de Occidente, en el Departamento de Antioquia, en una longitud de 13 Km. El presente estudio se realiza verificando el cumplimiento de las especificaciones a nivel nacional que para estos procesos estableció el Instituto Nacional de Vías (INVIAS) y verificando el cumplimiento de las normas IDU ET-2005. El reciclaje ―in situ‖ en frio tiene ventajas ecológicas (no necesita afectar las eventuales fuentes de materiales de la zona), económico (bajos costos comparados con reconstrucción) y técnico (los equipos para este proceso han presentado importantes avances tecnológicos) lo cual permitió su aplicación en la vía mencionada, lo cual con la adición de un agente estabilizador (cemento para el presente estudio) permite recuperar las condiciones iniciales de diseño de la estructura intervenida. El árbol de decisiones es una herramienta utilizada para el análisis y selección de la mejor opción de estructura a realizar teniendo en cuenta calidad y costos. El presente trabajo termina con un análisis detallado de las condiciones existentes, revisión de las diferentes opciones de intervención y el estudio económico de las diferentes alternativas de estructura de pavimento para la rehabilitación de la vía referida.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling problems. Following the basic idea behind CBR, the solutions of previously solved problems are employed to aid finding the solutions for new problems. A list of feature-value pairs is insufficient to represent all the necessary information. We show that attribute graphs can represent more information and thus can help to retrieve re-usable cases that have similar structures to the new problems. The case base is organised as a decision tree to store the attribute graphs of solved problems hierarchically. An example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results from our experiments show the effectiveness of the retrieval and adaptation in the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil is internationally acknowledged for its renewable sources, most notably, hydroelectric power plant projects which correspond to 65% of electricity production supply to the National Interconnected System. The main question behind this research is: what are the weights and the relative importance of the variables which have influence on the decision making process for the expansion of hydroelectric generation projects in Parana? The main objective is to propose a multi-criteria decision procedure, in association with water sources options that take into consideration the weight and relative importance of the alternatives having influence on the decision by enterprises in the generation of electricity in the state of Paraná. As far as the approach to the problem is concerned, this research can be classified as having mixed methodologies, applying Content Analysis, Delphi technique and the Analytic Hierarchy Process. Following Delphi methodology, a group of 21 was selected for data collection, all of those linked to Paranaense hydroelectricity market. And the main result was the construction of a decision tree in which it was possible to identify the importance and relative weight of the elements associated with the four dimensions of energy. In environmental dimension, the highest relative weight was placed on the loading capacity of Parana system; the economic dimension, the amortization of investment; in social dimension, the generation of direct work places and in institutional dimension, the availability of suitable sources of financing. Policy makers and business managers make their decisions based on specific criteria related to the organization segment, market information, economic and political behavior among other indicators that guide them in dealing with the typical tradeoffs of projects in hydropower area. The results obtained in the decision tree show that the economic bias is still the main factor in making investment decisions. However, environmental impacts on the State loading capacity, income generation, providing opportunities for direct as well as indirect jobs. And at an institutional level, the absence of funding sources show that the perception of experts is focused on other issues beyond the logic behind development per se. The order of priority of variables in this study indicates that in the current environment of uncertainty in the Brazilian economy as many variables must be analyzed and compared in order to optimize the scarce resources available to expand local development in relation to Paranaense water matrix.