842 resultados para data movement problem
Resumo:
There are far-reaching conceptual similarities between bi-static surface georadar and post-stack, "zero-offset" seismic reflection data, which is expressed in largely identical processing flows. One important difference is, however, that standard deconvolution algorithms routinely used to enhance the vertical resolution of seismic data are notoriously problematic or even detrimental to the overall signal quality when applied to surface georadar data. We have explored various options for alleviating this problem and have tested them on a geologically well-constrained surface georadar dataset. Standard stochastic and direct deterministic deconvolution approaches proved to be largely unsatisfactory. While least-squares-type deterministic deconvolution showed some promise, the inherent uncertainties involved in estimating the source wavelet introduced some artificial "ringiness". In contrast, we found spectral balancing approaches to be effective, practical and robust means for enhancing the vertical resolution of surface georadar data, particularly, but not exclusively, in the uppermost part of the georadar section, which is notoriously plagued by the interference of the direct air- and groundwaves. For the data considered in this study, it can be argued that band-limited spectral blueing may provide somewhat better results than standard band-limited spectral whitening, particularly in the uppermost part of the section affected by the interference of the air- and groundwaves. Interestingly, this finding is consistent with the fact that the amplitude spectrum resulting from least-squares-type deterministic deconvolution is characterized by a systematic enhancement of higher frequencies at the expense of lower frequencies and hence is blue rather than white. It is also consistent with increasing evidence that spectral "blueness" is a seemingly universal, albeit enigmatic, property of the distribution of reflection coefficients in the Earth. Our results therefore indicate that spectral balancing techniques in general and spectral blueing in particular represent simple, yet effective means of enhancing the vertical resolution of surface georadar data and, in many cases, could turn out to be a preferable alternative to standard deconvolution approaches.
Resumo:
There is an increasing awareness that the articulation of forensic science and criminal investigation is critical to the resolution of crimes. However, models and methods to support an effective collaboration between these partners are still poorly expressed or even lacking. Three propositions are borrowed from crime intelligence methods in order to bridge this gap: (a) the general intelligence process, (b) the analyses of investigative problems along principal perspectives: entities and their relationships, time and space, quantitative aspects and (c) visualisation methods as a mode of expression of a problem in these dimensions. Indeed, in a collaborative framework, different kinds of visualisations integrating forensic case data can play a central role for supporting decisions. Among them, link-charts are scrutinised for their abilities to structure and ease the analysis of a case by describing how relevant entities are connected. However, designing an informative chart that does not bias the reasoning process is not straightforward. Using visualisation as a catalyser for a collaborative approach integrating forensic data thus calls for better specifications.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.
Resumo:
The assessment of medical technologies has to answer several questions ranging from safety and effectiveness to complex economical, social, and health policy issues. The type of data needed to carry out such evaluation depends on the specific questions to be answered, as well as on the stage of development of a technology. Basically two types of data may be distinguished: (a) general demographic, administrative, or financial data which has been collected not specifically for technology assessment; (b) the data collected with respect either to a specific technology or to a disease or medical problem. On the basis of a pilot inquiry in Europe and bibliographic research, the following categories of type (b) data bases have been identified: registries, clinical data bases, banks of factual and bibliographic knowledge, and expert systems. Examples of each category are discussed briefly. The following aims for further research and practical goals are proposed: criteria for the minimal data set required, improvement to the registries and clinical data banks, and development of an international clearinghouse to enhance information diffusion on both existing data bases and available reports on medical technology assessments.
Resumo:
A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.
Resumo:
This is a 2006 national report to the EMCDDA, using 2005 data. It is compiled by the Reitox national focal point and covers epidemiology, policing, strategy, drugs markets, drug-related infectious diseases, drug-related death and problem drug use in Norway.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developedto explore patterns in high-dimensional multivariate data. The conventional versionof the algorithm involves the use of Euclidean metric in the process of adaptation ofthe model vectors, thus rendering in theory a whole methodology incompatible withnon-Euclidean geometries.In this contribution we explore the two main aspects of the problem:1. Whether the conventional approach using Euclidean metric can shed valid resultswith compositional data.2. If a modification of the conventional approach replacing vectorial sum and scalarmultiplication by the canonical operators in the simplex (i.e. perturbation andpowering) can converge to an adequate solution.Preliminary tests showed that both methodologies can be used on compositional data.However, the modified version of the algorithm performs poorer than the conventionalversion, in particular, when the data is pathological. Moreover, the conventional ap-proach converges faster to a solution, when data is \well-behaved".Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
In this paper we examine the problem of compositional data from a different startingpoint. Chemical compositional data, as used in provenance studies on archaeologicalmaterials, will be approached from the measurement theory. The results will show, in avery intuitive way that chemical data can only be treated by using the approachdeveloped for compositional data. It will be shown that compositional data analysis is aparticular case in projective geometry, when the projective coordinates are in thepositive orthant, and they have the properties of logarithmic interval metrics. Moreover,it will be shown that this approach can be extended to a very large number ofapplications, including shape analysis. This will be exemplified with a case study inarchitecture of Early Christian churches dated back to the 5th-7th centuries AD
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.