881 resultados para data generation
Resumo:
Software packages NUPARM and NUCGEN, are described, which can be used to understand sequence directed structural variations in nucleic acids, by analysis and generation of non-uniform structures. A set of local inter basepair parameters (viz. tilt, roll, twist, shift, slide and rise) have been defined, which use geometry and coordinates of two successive basepairs only and can be used to generate polymeric structures with varying geometries for each of the 16 possible dinucleotide steps. Intra basepair parameters, propeller, buckle, opening and the C6...C8 distance can also be varied, if required, while the sugar phosphate backbone atoms are fixed in some standard conformation ill each of the nucleotides. NUPARM can be used to analyse both DNA and RNA structures, with single as well as double stranded helices. The NUCGEN software generates double helical models with the backbone fixed in B-form DNA, but with appropriate modifications in the input data, it can also generate A-form DNA ar rd RNA duplex structures.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.
Resumo:
Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.
Resumo:
The growing interest for sequencing with higher throughput in the last decade has led to the development of new sequencing applications. This thesis concentrates on optimizing DNA library preparation for Illumina Genome Analyzer II sequencer. The library preparation steps that were optimized include fragmentation, PCR purification and quantification. DNA fragmentation was performed with focused sonication in different concentrations and durations. Two column based PCR purification method, gel matrix method and magnetic bead based method were compared. Quantitative PCR and gel electrophoresis in a chip were compared for DNA quantification. The magnetic bead purification was found to be the most efficient and flexible purification method. The fragmentation protocol was changed to produce longer fragments to be compatible with longer sequencing reads. Quantitative PCR correlates better with the cluster number and should thus be considered to be the default quantification method for sequencing. As a result of this study more data have been acquired from sequencing with lower costs and troubleshooting has become easier as qualification steps have been added to the protocol. New sequencing instruments and applications will create a demand for further optimizations in future.
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.
Resumo:
The EEG time series has been subjected to various formalisms of analysis to extract meaningful information regarding the underlying neural events. In this paper the linear prediction (LP) method has been used for analysis and presentation of spectral array data for the better visualisation of background EEG activity. It has also been used for signal generation, efficient data storage and transmission of EEG. The LP method is compared with the standard Fourier method of compressed spectral array (CSA) of the multichannel EEG data. The autocorrelation autoregressive (AR) technique is used for obtaining the LP coefficients with a model order of 15. While the Fourier method reduces the data only by half, the LP method just requires the storage of signal variance and LP coefficients. The signal generated using white Gaussian noise as the input to the LP filter has a high correlation coefficient of 0.97 with that of original signal, thus making LP as a useful tool for storage and transmission of EEG. The biological significance of Fourier method and the LP method in respect to the microstructure of neuronal events in the generation of EEG is discussed.
Resumo:
With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.
Resumo:
On the backdrop of climate change scenario, there is emphasis on controlling emission of greenhouse gases such as CO2. Major thrust being seen worldwide as well as in India is for generation of electricity from renewable sources like solar and wind. Chitradurga area of Karnataka is identified as a suitable location for the production of electricity from wind turbines because of high wind-energy resource. The power generated and the performance of 18 wind turbines located in this region are studied based on the actual field data collected over the past seven years. Our study shows a good prospect for expansion of power production using wind turbines.
Resumo:
Mobile nodes observing correlated data communicate using an insecure bidirectional switch to generate a secret key, which must remain concealed from the switch. We are interested in fault-tolerant secret key rates, i.e., the rates of secret key generated even if a subset of nodes drop out before the completion of the communication protocol. We formulate a new notion of fault-tolerant secret key capacity, and present an upper bound on it. This upper bound is shown to be tight when the random variables corresponding to the observations of nodes are exchangeable. Further, it is shown that one round of interaction achieves the fault-tolerant secret key capacity in this case. The upper bound is also tight for the case of a pairwise independent network model consisting of a complete graph, and can be attained by a noninteractive protocol.
Resumo:
Effects of fluctuations in habitat temperature (18-30 degrees) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrate are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 degrees C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR ( >= 3) and P/O ratio (1.4-2.7) at the temperature range of 15-25 degrees C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 degrees C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 degrees C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondria respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale ( measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m(-2) yr(-1) in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.
Resumo:
We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(N (g) ) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using Higgs irrep, ignoring the contribution of 1 2 0-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix . A consistency condition on the doublet (1,2,+/- 1]) mass matrix ( 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of are of generic kind required by the MSSM. A hidden sector with a pair of (S (a b) ; I center dot (a b) ) fields breaks supersymmetry and facilitates 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.