964 resultados para cycle system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global temperatures are expected to rise by between 1.1 and 6.4oC this century, depending, to a large extent, on the amount of carbon we emit to the atmosphere from now onwards. This warming is expected to have very negative effects on many peoples and ecosystems and, therefore, minimising our carbon emissions is a priority. Buildings are estimated to be responsible for around 50% of carbon emissions in the UK. Potential reductions involve both operational emissions, produced during use, and embodied emissions, produced during manufacture of materials and components, and during construction, refurbishments and demolition. To date the major effort has focused on reducing the, apparently, larger operational element, which is more readily quantifiable and reduction measures are relatively straightforward to identify and implement. Various studies have compared the magnitude of embodied and operational emissions, but have shown considerable variation in the relative values. This illustrates the difficulties in quantifying embodied, as it requires a detailed knowledge of the processes involved in the different life cycle phases, and requires the use of consistent system boundaries. However, other studies have established the interaction between operational and embodied, which demonstrates the importance of considering both elements together in order to maximise potential reductions. This is borne out in statements from both the Intergovernmental Panel on Climate Change and The Low Carbon Construction Innovation and Growth Team of the UK Government. In terms of meeting the 2020 and 2050 timeframes for carbon reductions it appears to be equally, if not more, important to consider early embodied carbon reductions, rather than just future operational reductions. Future decarbonisation of energy supply and more efficient lighting and M&E equipment installed in future refits is likely to significantly reduce operational emissions, lending further weight to this argument. A method of discounting to evaluate the present value of future carbon emissions would allow more realistic comparisons to be made on the relative importance of the embodied and operational elements. This paper describes the results of case studies on carbon emissions over the whole lifecycle of three buildings in the UK, compares four available software packages for determining embodied carbon and suggests a method of carbon discounting to obtain present values for future emissions. These form the initial stages of a research project aimed at producing information on embodied carbon for different types of building, components and forms of construction, in a simplified form, which can be readily used by building designers in optimising building design in terms of minimising overall carbon emissions. Keywords: Embodied carbon; carbon emission; building; operational carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnitude and direction of the coupled feedbacks between the biotic and abiotic components of the terrestrial carbon cycle is a major source of uncertainty in coupled climate–carbon-cycle models1, 2, 3. Materially closed, energetically open biological systems continuously and simultaneously allow the two-way feedback loop between the biotic and abiotic components to take place4, 5, 6, 7, but so far have not been used to their full potential in ecological research, owing to the challenge of achieving sustainable model systems6, 7. We show that using materially closed soil–vegetation–atmosphere systems with pro rata carbon amounts for the main terrestrial carbon pools enables the establishment of conditions that balance plant carbon assimilation, and autotrophic and heterotrophic respiration fluxes over periods suitable to investigate short-term biotic carbon feedbacks. Using this approach, we tested an alternative way of assessing the impact of increased CO2 and temperature on biotic carbon feedbacks. The results show that without nutrient and water limitations, the short-term biotic responses could potentially buffer a temperature increase of 2.3 °C without significant positive feedbacks to atmospheric CO2. We argue that such closed-system research represents an important test-bed platform for model validation and parameterization of plant and soil biotic responses to environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demands for thermal comfort, better indoor air quality together with lower environmental impacts have had ascending trends in the last decade. In many circumstances, these demands could not be fully covered through the soft approach of bioclimatic design like optimisation of the building orientation and internal layout. This is mostly because of the dense urban environment and building internal energy loads. In such cases, heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems make a key role to fulfill the requirements of indoor environment. Therefore, it is required to select the most proper HVAC&R system. In this study, a robust decision making approach for HVAC&R system selection is proposed. Technical performance, economic aspect and environmental impacts of 36 permutations of primary and secondary systems are taken into account to choose the most proper HVAC&R system for a case study office building. The building is a representative for the dominant form of office buildings in the UK. Dynamic performance evaluation of HVAC&R alternatives using TRNSYS package together with life cycle energy cost analysis provides a reliable basis for decision making. Six scenarios broadly cover the decision makers' attitudes on HVAC&R system selection which are analysed through Analytical Hierarchy Process (AHP). One of the significant outcomes reveals that, despite both the higher energy demand and more investment requirements associated with compound heating, cooling and power system (CCHP); this system is one of the top ranked alternatives due to the lower energy cost and C02 emissions. The sensitivity analysis reveals that in all six scenarios, the first five top ranked alternatives are not changed. Finally, the proposed approach and the results could be used by researchers and designers especially in the early stages of a design process in which all involved bodies face the lack of time, information and tools for evaluation of a variety of systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an outlook on the climate system thermodynamics. First, we construct an equivalent Carnot engine with efficiency and frame the Lorenz energy cycle in a macroscale thermodynamic context. Then, by exploiting the second law, we prove that the lower bound to the entropy production is times the integrated absolute value of the internal entropy fluctuations. An exergetic interpretation is also proposed. Finally, the controversial maximum entropy production principle is reinterpreted as requiring the joint optimization of heat transport and mechanical work production. These results provide tools for climate change analysis and for climate models’ validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the authors exploit two equivalent formulations of the average rate of material entropy production in the climate system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. This approach is based only on 2D radiative fields at the surface and at the top of atmosphere. Using 2D fields at the top of atmosphere alone, lower bounds to the rate of material entropy production and to the intensity of the Lorenz energy cycle are derived. By introducing a measure of the efficiency of the planetary system with respect to horizontal thermodynamic processes, it is possible to gain insight into a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the Program for Climate Model Diagnosis and Intercomparison (PCMDI)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) dataset in preindustrial climate conditions. It is found that about 90% of the material entropy production is due to vertical processes such as convection, whereas the large-scale meridional heat transport contributes to only about 10% of the total. This suggests that the traditional two-box models used for providing a minimal representation of entropy production in planetary systems are not appropriate, whereas a basic—but conceptually correct—description can be framed in terms of a four-box model. The total material entropy production is typically 55 mW m−2 K−1, with discrepancies on the order of 5%, and CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle featured by CMs are found to be around 1.0–1.5 W m−2, which implies that the derived inequality is rather stringent. When looking at the variability and covariability of the considered thermodynamic quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more uncertain. The contributions to material entropy production from vertical and horizontal processes are positively correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of the large-scale heat flux. The possibility of providing constraints on the 3D dynamics of the fluid envelope based only on 2D observations of radiative fluxes seems promising for the observational study of planets and for testing numerical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-phase system composed by a leach bed and a methanogenic reactor was modified for the first time to improve volumetric substrate degradation and methane yields from a complex substrate (maize; Zea mays). The system, which was operated for consecutive feed cycles of different durations for 120 days, was highly flexible and its performance improved by altering operational conditions. Daily substrate degradation was higher the shorter the feed cycle, reaching 8.5 g TSdestroyed d�1 (7-day feed cycle) but the overall substrate degradation was higher by up to 55% when longer feed cycles (14 and 28 days) were applied. The same occurred with volumetric methane yields, reaching 0.839 m3 (m3)�1 d�1. The system performed better than others on specific methane yields, reaching 0.434 m3 kg�1 TSadded, in the 14-day and 28-day systems. The UASB and AF designs performed similarly as second stage reactors on methane yields, SCOD and VFA removal efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a consequence of land use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass, and morphology responded differentially to elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterised with data from species grown in monoculture may be underestimating the belowground response to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m−2 K−1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, numerical analyses of the thermal performance of an indirect evaporative air cooler incorporating a M-cycle cross-flow heat exchanger has been carried out. The numerical model was established from solving the coupled governing equations for heat and mass transfer between the product and working air, using the finite-element method. The model was developed using the EES (Engineering Equation Solver) environment and validated by published experimental data. Correlation between the cooling (wet-bulb) effectiveness, system COP and a number of air flow/exchanger parameters was developed. It is found that lower channel air velocity, lower inlet air relative humidity, and higher working-to-product air ratio yielded higher cooling effectiveness. The recommended average air velocities in dry and wet channels should not be greater than 1.77 m/s and 0.7 m/s, respectively. The optimum flow ratio of working-to-product air for this cooler is 50%. The channel geometric sizes, i.e. channel length and height, also impose significant impact to system performance. Longer channel length and smaller channel height contribute to increase of the system cooling effectiveness but lead to reduced system COP. The recommend channel height is 4 mm and the dimensionless channel length, i.e., ratio of the channel length to height, should be in the range 100 to 300. Numerical study results indicated that this new type of M-cycle heat and mass exchanger can achieve 16.7% higher cooling effectiveness compared with the conventional cross-flow heat and mass exchanger for the indirect evaporative cooler. The model of this kind is new and not yet reported in literatures. The results of the study help with design and performance analyses of such a new type of indirect evaporative air cooler, and in further, help increasing market rating of the technology within building air conditioning sector, which is currently dominated by the conventional compression refrigeration technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of simulations carried out with the Met Office Unified Model at 12km, 4km and 1.5km resolution for a large region centred on West Africa using several different representations of the convection processes. These span the range of resolutions from much coarser than the size of the convection processes to the cloud-system resolving and thus encompass the intermediate "grey-zone". The diurnal cycle in the extent of convective regions in the models is tested against observations from the Geostationary Earth Radiation Budget instrument on Meteosat-8. By this measure, the two best-performing simulations are a 12km model without convective parametrization, using Smagorinsky style sub-grid scale mixing in all three dimensions and a 1.5km simulations with two-dimensional Smagorinsky mixing. Of these, the 12km model produces a better match to the magnitude of the total cloud fraction but the 1.5km results in better timing for its peak value. The results suggest that the previously-reported improvement in the representation of the diurnal cycle of convective organisation in the 4km model compared to the standard 12km configuration is principally a result of the convection scheme employed rather than the improved resolution per se. The details of and implications for high-resolution model simulations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between different convection modes can be investigated using an energy–cycle description under a framework of mass–flux parameterization. The present paper systematically investigates this system by taking a limit of two modes: shallow and deep convection. Shallow convection destabilizes itself as well as the other convective modes by moistening and cooling the environment, whereas deep convection stabilizes itself as well as the other modes by drying and warming the environment. As a result, shallow convection leads to a runaway growth process in its stand–alone mode, whereas deep convection simply damps out. Interaction between these two convective modes becomes a rich problem, even when it is limited to the case with no large–scale forcing, because of these opposing tendencies. Only if the two modes are coupled at a proper level can a self–sustaining system arise, exhibiting a periodic cycle. The present study establishes the conditions for self–sustaining periodic solutions. It carefully documents the behaviour of the two mode system in order to facilitate the interpretation of global model behaviours when this energy–cycle is implemented as a closure into a convection parameterization in future.