959 resultados para cryptic species
Resumo:
During the development of PCR primer sets for icrosatellite marker loci from enriched genomic libraries for three squat lobster species from Galatheidae (Decapoda: Anomura); Munida rugosa (Fabricius, 1775), M. sarsi (Huus, 1935), and Galathea strigosa (Linnaeus, 1761) (collectively known as squat lobsters), a number of unforeseen problems were encountered. These included PCR amplification failure, lack of amplification consistency, and the amplification of multiple fragments. Careful examination of microsatellite containing sequences revealed the existence of cryptic repeated elements on presumed unique flanking regions. BLAST analysis of these and other VNTR containing sequences (N 5 252) indicates that these cryptic elements can be grouped into families based upon sequence similarities. The unique features characterising these families suggest that different molecular mechanisms are involved. Of particular relevance is the association of microsatellites with mobile elements. This is the first reported observation of this phenomenon in crustaceans, and it also helps to explain why microsatellite primer development in galatheids has been relatively unsuccessful to date. We suggest a number of steps that can be used to identify similar problems in microsatellite marker development for other species, and also alternative approaches for both marker development and for the study of molecular evolution of species characterised by complex genome organisation. More specifically, we argue that new generation sequencing methodologies, which capitalise on parallel and multiplexed sequencing may pave the way forward for future crustacean research.
Resumo:
The development of a quick PCR-based method to distinguish European cryptic Myotis spp., Myotis mystacinus, Myotis brandtii and Myotis alcathoe is described. Primers were designed around species-specific single nucleotide polymorphisms (SNP’s) in the ND1 mitochondrial gene, and a pair of control primers was designed in the 12S mitochondrial gene. A multiplex of seven primer combinations produces clear species-specific bands using gel electrophoresis. Robustness of the method was tested on 33 M. mystacinus, 16 M. brandtii and 15 M. alcathoe samples from across the European range of these species. The method worked well on faecal samples collected from maternity roosts of M. mystacinus. The test is intended to aid collection of data on these species through a rapid and easy identification method with the ability to use DNA obtained from a range of sources including faecal matter.
Resumo:
The liver flukes, Fasciola hepatica and Fasciola gigantica, are considered to be sister species and between them present a major threat worldwide to livestock production. In this study sequence data have been employed from informative regions of the nuclear and mitochondrial genomes of over 200 morphologically F. hepatica-like or F. gigantica-like flukes from Europe, sub-Saharan Africa and South Asia to assess genetic diversity. Evidence is presented for the existence of four well-separated clades: African gigantica-like flukes, Indian gigantica-like flukes, European hepatica-like flukes and African high-altitude hepatica-like flukes. Application of the Biological Species Concept to trematodes is problematic; however, the degree of separation between these groups was sufficient for them to be considered as distinct species using the four times rule for speciation.
Resumo:
Background and Aims: Although hybridization can play a positive role in plant evolution, it has been shown that excessive unidirectional hybridization can result in replacement of a species’ gene pool, and even the extinction ofrare species via genetic assimilation. This study examines levels of introgression between the common Saxifraga spathularis and its rarer congener S. hirsuta, which have been observed to hybridize in the wild where they occursympatrically.
Methods: Seven species-specific single nucleotide polymorphisms (SNPs) were analysed in 1025 plants representing both species and their hybrid, S. polita, from 29 sites across their ranges in Ireland. In addition, species distributionmodelling was carried out to determine whether the relative abundance of the two parental species is likely to change under future climate scenarios.
Key Results: Saxifraga spathularis individuals tended to be genetically pure, exhibiting little or no introgression from S. hirsuta, but significant levels of introgression of S. spathularis alleles into S. hirsuta were observed, indicatingthat populations exhibiting S. hirsuta morphology are more like a hybrid swarm, consisting of backcrosses and F2s. Populations of the hybrid, S. polita, were generally comprised of F1s or F2s, with some evidence of backcrossing. Species distribution modelling under projected future climate scenarios indicated an increase in suitable habitats for both parental species.
Conclusions: Levels of introgression observed in this study in both S. spathularis and S. hirsuta would appear to be correlated with the relative abundance of the species. Significant introgression of S. spathularis alleles was detectedin the majority of the S. hirsuta populations analysed and, consequently, ongoing introgression would appear to represent a threat to the genetic integrity of S. hirsuta, particularly in areas where the species exists sympatricallywith its congener and where it is greatly outnumbered.
Resumo:
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.
Resumo:
Background: Symbiotic relationships have contributed to major evolutionary innovations, the maintenance of fundamental ecosystem functions, and the generation and maintenance of biodiversity. However, the exact nature of host/symbiont associations, which has important consequences for their dynamics, is often poorly known due to limited understanding of symbiont taxonomy and species diversity. Among classical symbioses, figs and their pollinating wasps constitute a highly diverse keystone resource in tropical forest and savannah environments. Historically, they were considered to exemplify extreme reciprocal partner specificity (one-to-one host-symbiont species relationships), but recent work has revealed several more complex cases. However, there is a striking lack of studies with the specific aims of assessing symbiont diversity and how this varies across the geographic range of the host. Results: Here, we use molecular methods to investigate cryptic diversity in the pollinating wasps of a widespread Australian fig species. Standard barcoding genes and methods were not conclusive, but incorporation of phylogenetic analyses and a recently developed nuclear barcoding gene (ITS2), gave strong support for five pollinator species. Each pollinator species was most common in a different geographic region, emphasising the importance of wide geographic sampling to uncover diversity, and the scope for divergence in coevolutionary trajectories across the host plant range. In addition, most regions had multiple coexisting pollinators, raising the question of how they coexist in apparently similar or identical resource niches. Conclusion: Our study offers a striking example of extreme deviation from reciprocal partner specificity over the full geographical range of a fig-wasp system. It also suggests that superficially identical species may be able to co-exist in a mutualistic setting albeit at different frequencies in relation to their fig host’s range. We show that comprehensive sampling and molecular taxonomic techniques may be required to uncover the true structure of cryptic biodiversity underpinning intimate ecological interactions.
Resumo:
Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. B. cinerea and B. pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents) when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles.
Resumo:
Karyotypes of Leposoma show a clear differentiation between species of the scincoides group from Brazilian Atlantic Forest (2n = 52, without distinctive size groups of chromosomes) and those of the parietale group from the Amazon (2n = 44, with 20M + 24m). In a previous study, we found that in the parietale group the parthenoform Leposoma percarinatum from the state of Mato Grosso, Brazil, exhibited a triploid karyotype (3n = 66) with 30 macrochromosomes and 36 microchromosomes. It was suggested that this karyotype arose after hybridization between a bisexual species with N = 22 (10M + 12m) and a hypothetical unisexual cryptic diploid form of the L. percarinatum complex. Herein, we describe the karyotypes for two species of the parietale group occurring sympatrically in the Arquipelago das Anavilhanas, lower Rio Negro, in Amazonian Brazil. The first represents a distinctive diploid parthenogenetic clone of the L. percarinatum complex, and the other is the recently described Leposoma ferreirai. Both species have 44 biarmed chromosomes clearly represented by 20 macrochromosomes and 24 microchromosomes and present Ag-NORs in one pair of the smallest sized microchromosomes; heteromorphism of size for these regions was detected in L. percarinatum. C-banding revealed blocks of constitutive heterochromatin on the telomeric and pericentromeric regions of macrochromosomes and some microchromosomes. The description of a diploid karyotype (2n = 44, 20M + 24m) for the L. percarinatum complex and its sympatric congener L. ferreirai provides new insight for a better understanding of the origin of parthenogenesis in the L. percarinatum complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cytogenetic and random amplified polymorphic DNA analyses carried out in the species Leptodactylus podicipinus, L. ocellatus, L. labyrinthicus, and L. fuscus from rural and urban habitats of the northwest region of São Paulo State, Brazil, showed that the karyotypes (2n = 22), constitutive heterochromatin distribution and nucleolus organizer region (NOR) location did not differ between the populations from the two environments. The in situ hybridization with an rDNA probe confirmed the location of the NORs on chromosome 8 revealing an in tandem duplication of that region in one of the chromosomes of L. fuscus. DAPI showed that part of the C-band-positive heterochromatin is rich in AT, including that in the proximity the NORs in L. podicipinus and L. ocellatus. The molecular analyses showed that the two populations (urban and rural) of L. podicipinus and L. fuscus are similar from a genetic point of view. The urban and rural populations of species L. ocellatus and L. labyrinthicus showed differences in genetic structures, probably due to urbanization which interferes with the dispersion of those frogs. The marked differences observed between the two populations of L. ocellatus can be representing the cryptic condition of the species. Unweighted pair-group method of analysis and genetic distance analysis detected the genetic proximity between L. ocellatus and L. fuscus. The results indicate that there was no reduction in the genetic diversity in the populations from the urban environment; however, the survival of these frogs would not be guaranteed in the case of an increase in human impact especially for populations of L. labyrinthicus and L. ocellatus. ©FUNPEC-RP.
Resumo:
Background: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family.Results: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes.Conclusions: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. © 2013 Parise-Maltempi et al.; licensee BioMed Central Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)