882 resultados para cost estimation accuracy
Resumo:
OBJECTIVE: To determine the accuracy, acceptability and cost-effectiveness of polymerase chain reaction (PCR) and optical immunoassay (OIA) rapid tests for maternal group B streptococcal (GBS) colonisation at labour. DESIGN: A test accuracy study was used to determine the accuracy of rapid tests for GBS colonisation of women in labour. Acceptability of testing to participants was evaluated through a questionnaire administered after delivery, and acceptability to staff through focus groups. A decision-analytic model was constructed to assess the cost-effectiveness of various screening strategies. SETTING: Two large obstetric units in the UK. PARTICIPANTS: Women booked for delivery at the participating units other than those electing for a Caesarean delivery. INTERVENTIONS: Vaginal and rectal swabs were obtained at the onset of labour and the results of vaginal and rectal PCR and OIA (index) tests were compared with the reference standard of enriched culture of combined vaginal and rectal swabs. MAIN OUTCOME MEASURES: The accuracy of the index tests, the relative accuracies of tests on vaginal and rectal swabs and whether test accuracy varied according to the presence or absence of maternal risk factors. RESULTS: PCR was significantly more accurate than OIA for the detection of maternal GBS colonisation. Combined vaginal or rectal swab index tests were more sensitive than either test considered individually [combined swab sensitivity for PCR 84% (95% CI 79-88%); vaginal swab 58% (52-64%); rectal swab 71% (66-76%)]. The highest sensitivity for PCR came at the cost of lower specificity [combined specificity 87% (95% CI 85-89%); vaginal swab 92% (90-94%); rectal swab 92% (90-93%)]. The sensitivity and specificity of rapid tests varied according to the presence or absence of maternal risk factors, but not consistently. PCR results were determinants of neonatal GBS colonisation, but maternal risk factors were not. Overall levels of acceptability for rapid testing amongst participants were high. Vaginal swabs were more acceptable than rectal swabs. South Asian women were least likely to have participated in the study and were less happy with the sampling procedure and with the prospect of rapid testing as part of routine care. Midwives were generally positive towards rapid testing but had concerns that it might lead to overtreatment and unnecessary interference in births. Modelling analysis revealed that the most cost-effective strategy was to provide routine intravenous antibiotic prophylaxis (IAP) to all women without screening. Removing this strategy, which is unlikely to be acceptable to most women and midwives, resulted in screening, based on a culture test at 35-37 weeks' gestation, with the provision of antibiotics to all women who screened positive being most cost-effective, assuming that all women in premature labour would receive IAP. The results were sensitive to very small increases in costs and changes in other assumptions. Screening using a rapid test was not cost-effective based on its current sensitivity, specificity and cost. CONCLUSIONS: Neither rapid test was sufficiently accurate to recommend it for routine use in clinical practice. IAP directed by screening with enriched culture at 35-37 weeks' gestation is likely to be the most acceptable cost-effective strategy, although it is premature to suggest the implementation of this strategy at present.
Resumo:
Background: Screening for congenital heart defects (CHDs) relies on antenatal ultrasound and postnatal clinical examination; however, life-threatening defects often go undetected. Objective: To determine the accuracy, acceptability and cost-effectiveness of pulse oximetry as a screening test for CHDs in newborn infants. Design: A test accuracy study determined the accuracy of pulse oximetry. Acceptability of testing to parents was evaluated through a questionnaire, and to staff through focus groups. A decision-analytic model was constructed to assess cost-effectiveness. Setting: Six UK maternity units. Participants: These were 20,055 asymptomatic newborns at = 35 weeks’ gestation, their mothers and health-care staff. Interventions: Pulse oximetry was performed prior to discharge from hospital and the results of this index test were compared with a composite reference standard (echocardiography, clinical follow-up and follow-up through interrogation of clinical databases). Main outcome measures: Detection of major CHDs – defined as causing death or requiring invasive intervention up to 12 months of age (subdivided into critical CHDs causing death or intervention before 28 days, and serious CHDs causing death or intervention between 1 and 12 months of age); acceptability of testing to parents and staff; and the cost-effectiveness in terms of cost per timely diagnosis. Results: Fifty-three of the 20,055 babies screened had a major CHD (24 critical and 29 serious), a prevalence of 2.6 per 1000 live births. Pulse oximetry had a sensitivity of 75.0% [95% confidence interval (CI) 53.3% to 90.2%] for critical cases and 49.1% (95% CI 35.1% to 63.2%) for all major CHDs. When 23 cases were excluded, in which a CHD was already suspected following antenatal ultrasound, pulse oximetry had a sensitivity of 58.3% (95% CI 27.7% to 84.8%) for critical cases (12 babies) and 28.6% (95% CI 14.6% to 46.3%) for all major CHDs (35 babies). False-positive (FP) results occurred in 1 in 119 babies (0.84%) without major CHDs (specificity 99.2%, 95% CI 99.0% to 99.3%). However, of the 169 FPs, there were six cases of significant but not major CHDs and 40 cases of respiratory or infective illness requiring medical intervention. The prevalence of major CHDs in babies with normal pulse oximetry was 1.4 (95% CI 0.9 to 2.0) per 1000 live births, as 27 babies with major CHDs (6 critical and 21 serious) were missed. Parent and staff participants were predominantly satisfied with screening, perceiving it as an important test to detect ill babies. There was no evidence that mothers given FP results were more anxious after participating than those given true-negative results, although they were less satisfied with the test. White British/Irish mothers were more likely to participate in the study, and were less anxious and more satisfied than those of other ethnicities. The incremental cost-effectiveness ratio of pulse oximetry plus clinical examination compared with examination alone is approximately £24,900 per timely diagnosis in a population in which antenatal screening for CHDs already exists. Conclusions: Pulse oximetry is a simple, safe, feasible test that is acceptable to parents and staff and adds value to existing screening. It is likely to identify cases of critical CHDs that would otherwise go undetected. It is also likely to be cost-effective given current acceptable thresholds. The detection of other pathologies, such as significant CHDs and respiratory and infective illnesses, is an additional advantage. Other pulse oximetry techniques, such as perfusion index, may enhance detection of aortic obstructive lesions.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.
Resumo:
Background. The objective is to estimate the cost-effectiveness of an intervention that reduces hospital readmission among older people at high risk. A cost-effectiveness model to estimate the costs and health benefits of the intervention was implemented. Methodology/Principal Findings. The model used data from a randomised controlled trial conducted in an Australian tertiary metropolitan hospital. Participants were acute medical admissions aged >65 years with at least one risk factor for readmission: multiple comorbidities, impaired functionality, aged >75 years, 30 recent multiple admissions, poor social support, history of depression. The intervention was a comprehensive nursing and physiotherapy assessment and an individually tailored program of exercise strategies and nurse home visits with telephone follow-up; commencing in hospital and continuing following discharge for 24 weeks. The change to cost outcomes, including the costs of implementing the intervention and all subsequent use of health care services, and, the change to health benefits, represented by quality adjusted life years, were estimated for the intervention as compared to existing practice. The mean change to total costs and quality 38 adjusted life years for an average individual over 24 weeks participating in the intervention were: cost savings of $333 (95% Bayesian credible interval $-1,932:1,282) and 0.118 extra quality adjusted life years (95% Bayesian credible interval 0.1:0.136). The mean net41 monetary-benefit per individual for the intervention group compared to the usual care condition was $7,907 (95% Bayesian credible interval $5,959:$9,995) for the 24 week period. Conclusions/Significance. The estimation model that describes this intervention predicts cost savings and improved health outcomes. A decision to remain with existing practices causes unnecessary costs and reduced health. Decision makers should consider adopting this 46 program for elderly hospitalised patients.
Resumo:
Biological inspiration has produced some successful solutions for estimation of self motion from visual information. In this paper we present the construction of a unique new camera, inspired by the compound eye of insects. The hemispherical nature of the compound eye has some intrinsically valuable properties in producing optical flow fields that are suitable for egomotion estimation in six degrees of freedom. The camera that we present has the added advantage of being lightweight and low cost, making it suitable for a range of mobile robot applications. We present some initial results that show the effectiveness of our egomotion estimation algorithm and the image capture capability of the hemispherical camera.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
This thesis aimed to investigate the way in which distance runners modulate their speed in an effort to understand the key processes and determinants of speed selection when encountering hills in natural outdoor environments. One factor which has limited the expansion of knowledge in this area has been a reliance on the motorized treadmill which constrains runners to constant speeds and gradients and only linear paths. Conversely, limits in the portability or storage capacity of available technology have restricted field research to brief durations and level courses. Therefore another aim of this thesis was to evaluate the capacity of lightweight, portable technology to measure running speed in outdoor undulating terrain. The first study of this thesis assessed the validity of a non-differential GPS to measure speed, displacement and position during human locomotion. Three healthy participants walked and ran over straight and curved courses for 59 and 34 trials respectively. A non-differential GPS receiver provided speed data by Doppler Shift and change in GPS position over time, which were compared with actual speeds determined by chronometry. Displacement data from the GPS were compared with a surveyed 100m section, while static positions were collected for 1 hour and compared with the known geodetic point. GPS speed values on the straight course were found to be closely correlated with actual speeds (Doppler shift: r = 0.9994, p < 0.001, Δ GPS position/time: r = 0.9984, p < 0.001). Actual speed errors were lowest using the Doppler shift method (90.8% of values within ± 0.1 m.sec -1). Speed was slightly underestimated on a curved path, though still highly correlated with actual speed (Doppler shift: r = 0.9985, p < 0.001, Δ GPS distance/time: r = 0.9973, p < 0.001). Distance measured by GPS was 100.46 ± 0.49m, while 86.5% of static points were within 1.5m of the actual geodetic point (mean error: 1.08 ± 0.34m, range 0.69-2.10m). Non-differential GPS demonstrated a highly accurate estimation of speed across a wide range of human locomotion velocities using only the raw signal data with a minimal decrease in accuracy around bends. This high level of resolution was matched by accurate displacement and position data. Coupled with reduced size, cost and ease of use, the use of a non-differential receiver offers a valid alternative to differential GPS in the study of overground locomotion. The second study of this dissertation examined speed regulation during overground running on a hilly course. Following an initial laboratory session to calculate physiological thresholds (VO2 max and ventilatory thresholds), eight experienced long distance runners completed a self- paced time trial over three laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. Group level speed was highly predicted using a modified gradient factor (r2 = 0.89). Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain. The third study of this thesis investigated the effect of implementing an individualised pacing strategy on running performance over an undulating course. Six trained distance runners completed three trials involving four laps (9968m) of an outdoor course involving uphill, downhill and level sections. The initial trial was self-paced in the absence of any temporal feedback. For the second and third field trials, runners were paced for the first three laps (7476m) according to two different regimes (Intervention or Control) by matching desired goal times for subsections within each gradient. The fourth lap (2492m) was completed without pacing. Goals for the Intervention trial were based on findings from study two using a modified gradient factor and elapsed distance to predict the time for each section. To maintain the same overall time across all paced conditions, times were proportionately adjusted according to split times from the self-paced trial. The alternative pacing strategy (Control) used the original split times from this initial trial. Five of the six runners increased their range of uphill to downhill speeds on the Intervention trial by more than 30%, but this was unsuccessful in achieving a more consistent level of oxygen consumption with only one runner showing a change of more than 10%. Group level adherence to the Intervention strategy was lowest on downhill sections. Three runners successfully adhered to the Intervention pacing strategy which was gauged by a low Root Mean Square error across subsections and gradients. Of these three, the two who had the largest change in uphill-downhill speeds ran their fastest overall time. This suggests that for some runners the strategy of varying speeds systematically to account for gradients and transitions may benefit race performances on courses involving hills. In summary, a non – differential receiver was found to offer highly accurate measures of speed, distance and position across the range of human locomotion speeds. Self-selected speed was found to be best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption limited runner’s speeds only on uphills, speed on the level was systematically influenced by preceding gradients, while there was a much larger individual variation on downhill sections. Individuals were found to adopt distinct but unrelated pacing strategies as a function of durations and gradients, while runners who varied pace more as a function of gradient showed a more consistent level of oxygen consumption. Finally, the implementation of an individualised pacing strategy to account for gradients and transitions greatly increased runners’ range of uphill-downhill speeds and was able to improve performance in some runners. The efficiency of various gradient-speed trade- offs and the factors limiting faster downhill speeds will however require further investigation to further improve the effectiveness of the suggested strategy.
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.