480 resultados para coprophagous beetles
Resumo:
In its freshwater amphipod host Gammarus duebeni celticus, the microsporidian parasite Pleistophora mulleri showed 23% transmission efficiency when uninfected individuals were fed infected tissue, but 0% transmission by water-borne and coprophagous routes. Cannibalism between unparasitised and parasitised individuals was significantly in favour of the former (37% compared to 0%). In addition, cannibalism between parasitised individuals was significantly higher than between unparasitised individuals (27% compared to 0%). Thus, parasitised individuals were more likely to be cannibalised by both unparasitised and parasitised individuals. We discuss the conflicting selective forces within this host/parasite relationship, the implications of parasite mediated cannibalism for host population structure and the impacts this may have on the wider aquatic community.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
The reconstruction and structure of the European Holocene “wildwood” has been the focus of considerable academic debate. The ability of palaeoecological data and particularly pollen analysis to accurately reflect the density of wildwood canopy has also been widely discussed. Fossil insects, as a proxy for vegetation and landscape structure, provide a potential approach to address this argument. Here, we present a review and re-analysis of 36 early and mid-Holocene (9500-2000 cal BC) sub-fossil beetle assemblages from Britain, examining percentage values of tree, open ground and dung beetles as well as tree host data to gain an insight into vegetation structure, the role of grazing animals in driving such structure and establish independently the importance of different types of trees and associated shading in the early Holocene “wildwood”. Open indicator beetle species are persistently present over the entire review period, although they fluctuate in importance. During the early Holocene (9500-6000 cal BC), these indicators are initially high, at levels which are not dissimilar to modern data from pasture woodland. However, during the latter stages of this and the next period, 6000-4000 cal BC, open ground and pasture indicators decline and are generally low compared with previously. Alongside this pattern, we see woodland indicators generally increase in importance, although there are significant local fluctuations. Levels of dung beetles are mostly low over these periods, with some exceptions to this pattern, especially towards the end of the Mesolithic and in floodplain areas. Host data associated with the fossil beetles indicate that trees associated with lighter canopy conditions such as oak, pine, hazel and birch are indeed important components of the tree canopy during the earlier Holocene (c. 9500-6000 cal BC), in accordance with much of the current pollen literature. Beetles associated with more shade-tolerant trees (such as lime and elm) become more frequent in the middle Holocene (6000-4000 cal BC) suggesting that at this stage the woodland canopy was less open than previously, although open ground and pasture areas appear to have persisted in some locations. The onset of agriculture (4000-2000 cal BC) coincides with significant fluctuations in woodland composition and taxa. This is presumably as a result of human impact, although here there are significant regional variations. There are also increases in the amounts of open ground represented and especially in the levels of dung beetles present in faunas, suggesting there is a direct relationship between the activities of grazing animals and the development of more open areas. One of the most striking aspects of this review is the variable nature of the landscape suggested by the palaeoecological data, particularly but not exclusively with the onset of agriculture: some earlier sites indicate high variability between levels of tree-associated species on the one hand and the open ground beetle fauna on the other, indicating that in some locations, open areas were of local significance and can be regarded as important features of the Holocene landscape. The role of grazing animals in creating these areas of openness was apparently minimal until the onset of the Neolithic.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Resumo:
Social immune systems comprise immune defences mounted by individuals for the benefit of others (sensu Cotter & Kilner 2010a). Just as with other forms of immunity, mounting a social immune response is expected to be costly but so far these fitness costs are unknown. We measured the costs of social immunity in a sub-social burying beetle, a species in which two or more adults defend a carrion breeding resource for their young by smearing the flesh with antibacterial anal exudates. Our experiments on widowed females reveal that a bacterial challenge to the breeding resource upregulates the antibacterial activity of a female's exudates, and this subsequently reduces her lifetime reproductive success. We suggest that the costliness of social immunity is a source of evolutionary conflict between breeding adults on a carcass, and that the phoretic communities that the beetles transport between carrion may assist the beetle by offsetting these costs.
Resumo:
Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.
Resumo:
Warming could strongly stabilize or destabilize populations and food webs by changing the interaction strengths between predators and their prey. Predicting the consequences of warming requires understanding how temperature affects ingestion (energy gain) and metabolism (energy loss). Here, we studied the temperature dependence of metabolism and ingestion in laboratory experiments with terrestrial arthropods (beetles and spiders). From this data, we calculated ingestion efficiencies (ingestion/metabolism) and per capita interaction strengths in the short and long term. Additionally, we investigated if and how body mass changes these temperature dependencies. For both predator groups, warming increased metabolic rates substantially, whereas temperature effects on ingestion rates were weak. Accordingly, the ingestion efficiency (the ratio of ingestion to metabolism) decreased in all treatments. This result has two possible consequences: on the one hand, it suggests that warming of natural ecosystems could increase intrinsic population stability, meaning less fluctuations in population density; on the other hand, decreasing ingestion efficiencies may also lead to higher extinction risks because of starvation. Additionally, predicted long-term per capita interaction strengths decreased with warming, which suggests an increase in perturbation stability of populations, i.e., a higher probability of returning to the same equilibrium density after a small perturbation. Together, these results suggest that warming has complex and potentially profound effects on predator-prey interactions and food-web stability.
Resumo:
1. Recent work shows that organisms possess two strategies of immune response: personal immunity, which defends an individual, and social immunity, which protects other individuals, such as kin. However, it is unclear how individuals divide their limited resources between protecting themselves and protecting others.
2. Here, with experiments on female burying beetles, we challenged the personal immune system and measured subsequent investment in social immunity (antibacterial activity of the anal exudates).
3. Our results show that increased investment in one aspect of personal immunity (wound repair) causes a temporary decrease in one aspect of the social immune response.
4. Our experiments further show that by balancing investment in personal and social immunity in this way during one breeding attempt, females are able to defend their subsequent lifetime reproductive success.
5. We discuss the nature of the physiological trade-off between personal and social immunity in species that differ in the degree of eusociality and coloniality, and suggest that it may also vary within species in relation to age and partner contributions to social immunity.
Resumo:
The recent growth in bioenergy crop cultivation, stimulated by the need to implement measures to reduce net CO emissions, is driving major land-use changes with consequences for biodiversity and ecosystem service provision. Although the type of bioenergy crop and its associated management is likely to affect biodiversity at the local (field) scale, landscape context and its interaction with crop type may also influence biodiversity on farms. In this study, we assessed the impact of replacing conventional agricultural crops with two model bioenergy crops (either oilseed rape Brassica napus or Miscanthus × giganteus) on vascular plant, bumblebee, solitary bee, hoverfly and carabid beetle richness, diversity and abundance in 50 sites in Ireland. We assessed whether within-field biodiversity was also related to surrounding landscape structure. We found that local- and landscape-scale variables correlated with biodiversity in these agricultural landscapes. Overall, the differences between the bioenergy crops and the conventional crops on farmland biodiversity were mostly positive (e.g. higher vascular plant richness in Miscanthus planted on former conventional tillage, higher solitary bee abundance and richness in Miscanthus and oilseed rape compared with conventional crops) or neutral (e.g. no differences between crop types for hoverflies and bumblebees). We showed that these crop type effects were independent of (i.e. no interactions with) the surrounding landscape composition and configuration. However, surrounding landscape context did relate to biodiversity in these farms, negatively for carabid beetles and positively for hoverflies. Although we conclude that the bioenergy crops compared favourably with conventional crops in terms of biodiversity of the taxa studied at the field scale, the effects of large-scale planting in these landscapes could result in very different impacts. Maintaining ecosystem functioning and the delivery of ecosystem services will require a greater understanding of impacts at the landscape scale to ensure the sustainable development of climate change mitigation measures.
Resumo:
In this study, evidence is provided of social immunity in the offspring of a sub-social species, the burying beetle, Nicrophorus vespilloides. Nicrophorus vespilloides is a carrion breeder and, in a similar fashion to the adult beetles, the offspring produce exudates that exhibit lytic activity, which are used to coat the breeding resource. This strategy defends against the microbial community. The lytic activity in larval exudates declines as the brood develops, perhaps being most beneficial at the start of the breeding bout. Changing levels of parental care through widowing/orphaning affects lytic activity in the larval exudates, with levels decreasing in the absence of both parents.
Resumo:
How are resources split between caring for offspring and self-maintenance? Is the timing of immune challenge important? In burying beetles challenging the immune system prior to breeding does not affect the total number and quality of offspring produced during the individual's lifetime. However, the immune system is suppressed during breeding and if an immune challenge is presented during this time the beetle will upregulate its immune system, but at the detriment to the number of offspring produced during that breeding opportunity.We know that parental investment and immune investment are costly processes, but it is unclear which trait will be prioritized when both may be required. Here, we address this question using the burying beetle Nicrophorus vespilloides, carrion breeders that exhibit biparental care of young. Our results show that immunosuppression occurs during provision of parental care. We measured phenoloxidase (PO) on Days 1-8 of the breeding bout and results show a clear decrease in PO immediately from presentation of the breeding resource onward. Having established baseline immune investment during breeding we then manipulated immune investment at different times by applying a wounding challenge. Beetles were wounded prior to and during the parental care period and reproductive investment quantified. Different effects on reproductive output occur depending on the timing of wounding. Challenging the immune system with wounding prior to breeding does not affect reproductive output and subsequent lifetime reproductive success (LRS). LRS is also unaffected by applying an immune elicitor prior to breeding, though different arms of the immune system are up/downregulated, perhaps indicating a trade-off between cellular and humoral immunity. In contrast, wounding during breeding reduces reproductive output and to the greatest extent if the challenge is applied early in the breeding bout. Despite being immunosuppressed, breeding beetles can still respond to wounding by increasing PO, albeit not to prebreeding levels. This upregulation of PO during breeding may affect parental investment, resulting in a reduction in reproductive output. The potential role of juvenile hormone in controlling this trade-off is discussed.
Resumo:
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
Resumo:
How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in "staying alive" in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual.
Resumo:
The first report of the disease (“pine wilt disease”) associated with the pinewood nematode, goes back to 1905, when Yano reported an unusual decline of pines from Nagasaki. For a long time thereafter, the cause of he disease was sought, but without success. Because of the large number of insect species that were usually seen around and on infected trees, it had always been assumed that the causal agent would prove to be one of these. However, in 1971, Kiyohara and Tokushike found a nematode of the genus Bursaphelenchus in infected trees. The nematode found was multiplied on fungal culture, inoculated into healthy trees and then re-isolated from the resulting wilted trees. The subsequent published reports were impressive: this Bursaphelenchus species could kill fully-grown trees within a few months in the warmer areas of Japan, and could destroy complete forests of susceptible pine species within a few years. Pinus densiflora, P. thunbergii und P. luchuensis were particularly affected. In 1972, Mamiya and Kiyohara described the new species of nematode extracted from the wood of diseased pines; it was a named Bursaphelenchus lignicolus. Since 1975, the species has spread to the north of Japan, with the exception of the most northerly prefectures. In 1977, the loss of wood in the west of the country reached 80%. Probably as a result of unusually high summer temperatures and reduced rainfall in the years 1978 and 1979, the losses were more than 2 million m3 per year. From the beginning, B. lignicolus was always considered by Japanese scientists to be an exotic pest. But where did it come from? That this nematode could also cause damage in the USA became clear in 1979 when B. lignicolus was isolated in great numbers from wood of a 39 year-old pine tree (Pinus nigra) in Missouri which had suddenly died after the colour of its needles changed to a reddish-brown colour (Dropkin und Foudin, 2 1979). In 1981, B. lignicolus was synonymised by Nickle et al. with B. xylophilus which had been found for the first time in the USA as far back as 1929, and reported by Steiner and Buhrer in 1934. It had originally been named Aphelenchoides xylophilus, the wood-inhabiting Aphelenchoides but was recognised by Nickle, in 1970,to belong in the genus Bursaphelenchus. Its common name in the USA was the "pine wood nematode" (PWN. After its detection in Missouri, it became known that B. xylophilus was widespread throughout the USA and Canada. It occurred there on native species of conifers where, as a rule, it did not show the symptoms of pine wilt disease unless susceptible species were stressed eg., by high temperature. This fact was an illuminating piece of evidence that North America could be the homeland of PWN. Dwinell (1993) later reported the presence of B. xylophilus in Mexico. The main vector of the PWN in Japan was shown to be the long-horned beetle Monochamus alternatus, belonging to the family Cerambycidae. This beetle lays its eggs in dead or dying trees where the developing larvae then feed in the cambium layer. It was already known in Japan in the 19th century but in the 1930s, it was said to be present in most areas of Japan, but was generally uncommon. However, with the spread of the pine wilt disease, and the resulting increase of weakened trees that could act as breeding sites for beetles, the populations of Monochamus spp. increased significantly In North America, other Monochamus species transmit PWN, and the main vector is M. carolinensis. In Japan, there are also other, less efficient vectors in the genus Monochamus. Possibly, all Monochamus species that breed in conifers can transmit the PWN. The occasional transmission by less efficient species of Monochamus or by some of the many other beetle genera in the bark or wood is of little significance. In Europe, M. galloprovincialis and M. sutor transmits the closely related species B. mucronatus. Some speculate that these two insect species are “standing by” and waiting for the arrival of B. xylophilus. In 1982, the nematode was detected and China. It was first found in dead pines near the Zhongshan Monument of Nanjing (CHENG et. al. 1983); 265 trees were then killed by pine wilt disease. Despite great efforts at eradication in China, the nematode spread further and pine wilt disease has been 3 reported from parts of the provinces of Jiangsu, Anhui, Guangdong, Shandong, Zhejiang and Hubei (YANG, 2003). In 1986, the spread of the PWN to Taiwan was discovered and in 1989, the nematode was reported to be present in the Republic of Korea where it had first been detected in Pinus thunbergii and P. densiflora. It was though to have been introduced with packing material from Japan. PWN was advancing. In 1984, B. xylophilus was found in wood chips imported into Finland from the USA and Canada, and this was the impetus to establish phytosanitary measures to prevent any possible spread into Europe. Finland prohibited the import of coniferous wood chips from these sources, and the other Nordic countries soon followed suit. EPPO (the European and Mediterranean Plant Protection Organization) made a recommendation to its member countries in 1986 to refuse wood imports from infested countries. With its Directive of 1989 (77/93 EEC), the European Community (later called the European Union or EU) recognised the potential danger of B. xylophilus for European forests and imposed restrictions on imports into the Europe. PWN was placed on the quarantine list of the EU and also of other European countries. Later, in 1991, a dispensation was allowed by the Commission of the EU(92/13 EEC) for coniferous wood from North America provided that certain specified requirements were fulfilled that would prevent introduction.
Resumo:
The occurrence of Bursaphelenchus species in the Czech Republic is poorly known, the first report of the genus being made by Kubátová et al. (2000) who reported the association of B. eremus with the hyphomycetous microfungus, Esteya vermicola, and the bark beetle, Scolytus intricatus, collected from Quercus robur, in central Bohemia. To date, four other species have been reported from the country, namely B. fungivorus (Braasch et al., 2002), B. hofmanni (see Braasch, 2001), B. mucronatus (see Braasch, 2001) and B. vallesianus (Gaar et al., 2006). More recently, a survey for Bursaphelenchus species associated with bark- and wood-boring insects in the Czech Republic identified B. pinophilus Brzeski & Baujard, 1997 from the Moravia region. Although this represents a new country record, it was also associated with nematangia on the hind wings of a new insect vector. A total of 404 bark- and wood-boring insects were collected from declining or symptomatic trees and screened for the presence of Bursaphelenchus. Bark and longhorn beetles were captured manually after debarking parts of the trunk displaying symptoms of insect attacks. Longhorn beetle larvae were also collected together with logs cut from the trunk. Logs were kept at room temperature in the laboratory until insect emergence. Each adult insect was individually dissected in water and examined for nematodes. All nematodes resembling dauer juveniles of Bursaphelenchus were collected and identified by molecular characterisation using a region of ribosomal DNA (rDNA) containing the internal transcribed spacer regions ITS1 and ITS2. ITS-RFLP analyses using five restriction enzymes (AluI, HaeIII, HinfI, MspI, RsaI) were performed to generate the species-specific profile according to Burgermeister et al. (2009). Species identification was also confirmed by morphological data after culture of the dauers on Botrytis cinerea Pers. ex Ft., growing in 5% malt extract agar. During this survey, only species belonging to the Curculionidae, subfamily Scolytinae, revealed the presence of nematodes belonging to Bursaphelenchus. Dauers of this genus were found aggregated under the elytra in nematangia formed at the root of the hind wings (Fig. 1). The dauers were identified from 12 individuals of Pityogenes bidentatus (Herbst, 1783) (Coleoptera: Scolytinae) collected under the bark of Pinus sylvestris trunks. Each insect carried ca 10-100 dauers. The ITS-RFLP patterns of the dauers so obtained confirmed the identification of B. pinophilus associated with this insect species. Bursaphelenchus pinophilus has been found mainly in Europe and has been reported from various countries such as Poland (Brzeski & Baujard, 1997), Germany (Braasch, 2001), and Portugal (Penas et al., 2007). The recent detection of this species associated with dead P. koraiensis in Korea (Han et al., 2009) expands its geographical distribution and potential importance. It has been found associated only with Pinus species, but very little is known about the insect vector. The bark beetle, Hylurgus ligniperda, was initially suggested as the insect vector by Pe-nas et al. (2006), although the nematode associated with this insect was later reclassified as B. sexdentati by morphological and molecular analysis (Penas et al., 2007). According to the literature, P. bidentatus has been cited as a vector of Ektaphelenchus sp. (Kakuliya, 1966) in Georgia, and an unidentified nematode species in Spain (Roberston et al., 2008). Interestingly, B. pinophilus was found in the nematangia formed at the root of the hind wings of P. bidentatus. Although this phenomenon is not so common in other Bursaphelenchus species, B. rufipennis has been found recently in such a structure on the hind wings of the insect Dendroctonus rufipennis (Kanzaki et al., 2008). Although other nematode species (e.g., Ektaphelenchus spp.) are frequently found associated within the same nematangia (see Kanzaki et al., 2008), in this particular case, only dauers of B. pinophilus were identified. The association between B. pinophilus and P. bidentatus represents the first report of this biological association and the association with the Scolytinae strengthens the tight and specific links between this group of Bursaphelenchus species and members of the Scolytinae (Ryss et al., 2005).