985 resultados para controlled atmosphere storage
Resumo:
The Mine Improvement and New Emergency Response (MINER) Act of 2006 implemented new regulations in the underground coal mining industry that allow for the certification of non-compressed gas equipment for respiratory protection in underground coal mines. NASA’s Kennedy Space Center (KSC) Biomedical Research and Engineering Laboratory (BRL) is investigating the potential to expand cryogenic air supply systems into the mining and general industries. These investigations have, so far, resulted in four separate comparison and hardware development programs. The Propellant Handlers Ensemble (PHE) and Level “A” Ensemble Comparison (LAE): This study compared worker thermal stress while using the industry standard Level A hazardous material handling ensemble as opposed to using the similarly protective Propellant Handler’s Ensemble (PHE) that utilizes a cryogenic air supply pack, known as an Environmental Control Unit (ECU) as opposed to the compressed air Self Contained Breathing Apparatus (SCBA) used in the LAE. The research found that, in a 102°F environment, test subjects experienced significantly decreased body temperature increases, significantly decreased heart rate increases, and decreased sweat loss while performing a standard work routine while using the PHE, compared to the same test subjects performing the same routine while using the LAE. The Cryogenic Refuge Alternative Supply System (CryoRASS) project: The MINER Act of 2006 requires the operators of underground coal mines to provide refuge alternatives that can provide a safe atmosphere for workers for up to 96 hours in the event of a mine emergency. The CryoRASS project retrofitted an existing refuge chamber with a liquid air supply instead of the standard compressed air supply system and performed a 96 hour test. The CryoRASS system demonstrated that it provided a larger air supply in a significantly smaller footprint area, provided humidity and temperature control, and maintained acceptable oxygen and carbon dioxide levels in the chamber for the required amount of time. SCBA and Mine Rescue System (CryoBA/CryoASFS) Another requirement of the MINER Act is that additional emergency breathing equipment must be staged along evacuation routes to supplement the Self Contained/Self Rescue (SCSR) devices that are now required. The BRL has developed an SCBA known as the Cryogenic Breathing Apparatus (CryoBA), that has the ability to provide 2 hours of breathing air, a refill capability, and some cooling for the user. Cryogenic Air Storage and Filling Stations (CryoASFS) would be positioned in critical areas to extend evacuation time. The CryoASFS stations have a significantly smaller footprint and larger air storage capacity to similar compressed air systems. The CryoBA pack is currently undergoing NIOSH certification testing. Technical challenges associated with liquid breathing air systems: Research done by the BRL has also addressed three major technical challenges involved with the widespread use of liquid breathing air. The BRL developed a storage Dewar fitted with a Cryorefrigerator that has stored liquid air for four months with no appreciable oxygen enrichment due to differential evaporation. Testing of liquid breathing air was material and time intensive. A BRL contract developed a system that only required 1 liter of air and five minutes of time compared to the 10 liters of air and 75 minutes of time required by the old method. The BRL also developed a simple and cost effective method of manufacturing liquid air that joins a liquid oxygen tanker with a liquid nitrogen tanker through an orifice controlled “Y” fitting, mixing the two components, and depositing the mixed breathing air in a separate tanker.
Resumo:
A systematic approach was developed to investigate the stability of gentamicin sulfate (GS) and GS/poly (lactic-co-glycolic acid) (PLGA) coatings on hydroxyapatite surfaces. The influence of environmental factors (light, humidity, oxidation and heat) upon degradation of the drug in the coatings was investigated using liquid chromatography with evaporative light scattering detection and mass spectrometry. GS coated rods were found to be stable across the range of environments assessed, with only an oxidizing atmosphere resulting in significant changes to the gentamicin composition. In contrast, rods coated with GS/PLGA were more sensitive to storage conditions with compositional changes being detected after storage at 60 °C, 75% relative humidity or exposure to light. The effect of γ-irradiation on the coated rods was also investigated and found to have no significant effect. Finally, liquid chromatography–mass spectrometry analysis revealed that known gentamines C1, C1a and C2 were the major degradants formed. Forced degradation of gentamicin coatings did not produce any unexpected degradants or impurities.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
Background: Noise is a significant barrier to sleep for acute care hospital patients, and sleep has been shown to be therapeutic for health, healing and recovery. Scheduled quiet time interventions to promote inpatient rest and sleep have been successfully trialled in critical care but not in acute care settings. Objectives: The study aim was to evaluate as cheduled quiet time intervention in an acute care setting. The study measured the effect of a scheduled quiet time on noise levels, inpatients’ rest and sleep behaviour, and wellbeing. The study also examined the impact of the intervention on patients’, visitors’ and health professionals’ satisfaction, and organisational functioning. Design: The study was a multi-centred non-randomised parallel group trial. Settings: The research was conducted in the acute orthopaedic wards of two major urban public hospitals in Brisbane, Australia. Participants: All patientsadmitted to the two wards in the5-month period of the study were invited to participate, withafinalsample of 299 participants recruited. This sample produced an effect size of 0.89 for an increase in the number of patients asleep during the quiet time. Methods: Demographic data were collected to enable comparison between groups. Data for noise level, sleep status, sleepiness and well being were collected using previously validated instruments: a Castle Model 824 digital sound level indicator; a three point sleep status scale; the Epworth Sleepiness Scale; and the SF12 V2 questionnaire. The staff, patient and visitor surveys on the experimental ward were adapted from published instruments. Results: Significant differences were found between the two groups in mean decibel level and numbers of patients awake and asleep. The difference in mean measured noise levels between the two environments corresponded to a ‘perceived’ difference of 2 to 1. There were significant correlations between average decibel level and number of patients awake and asleep in the experimental group, and between average decibel level and number of patients awake in the control group. Overall, patients, visitors and health professionals were satisfied with the quiet time intervention. Conclusions: The findings show that a quiet time intervention on an acute care hospital ward can affect noise level and patient sleep/wake patterns during the intervention period. The overall strongly positive response from surveys suggests that scheduled quiet time would be a positively perceived intervention with therapeutic benefit.
Resumo:
The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.
Resumo:
Vendors provide reference process models as consolidated, off-the-shelf solutions to capture best practices in a given industry domain. Customers can then adapt these models to suit their specific requirements. Traditional process flexibility approaches facilitate this operation, but do not fully address it as they do not sufficiently take controlled change guided by vendors' reference models into account. This tension between the customer's freedom of adapting reference models, and the ability to incorporate with relatively low effort vendor-initiated reference model changes, thus needs to be carefully balanced. This paper introduces process extensibility as a new paradigm for customizing reference processes and managing their evolution over time. Process extensibility mandates a clear recognition of the different responsibilities and interests of reference model vendors and consumers, and is concerned with keeping the effort of customer-side reference model adaptations low while allowing sufficient room for model change.