896 resultados para contrast medium
Resumo:
In this paper, a solution method is presented to deal with fully coupled problems between medium deformation, pore-fluid flow and heat transfer in fluid-saturated porous media having supercritical Rayleigh numbers. To validate the present solution method, analytical solutions to a benchmark problem are derived for some special cases. After the solution method is validated, a numerical study is carried out to investigate the effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in fluid-saturated media when they are heated from below. The related numerical results have demonstrated that: (1) medium thermoelasticity has a little influence on the overall pattern of convective pore-fluid flow, but it has a considerable effect on the localization of medium deformation, pore-fluid flow, heat transfer and mineralization in a porous medium, especially when the porous medium is comprised of soft rock masses; (2) convective pore-fluid flow plays a very important role in the localization of medium deformation, heat transfer and mineralization in a porous medium. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
We investigate the role of information in the internationalization of small and medium enterprises (SMEs). Information internalization is fundamentally antecedent to SME internationalization and is being facilitated increasingly by recent important trends. We offer a conceptual explanation and related propositions on information internalization, emphasizing hurdle rate theory for ascertaining the acceptability of firms' internationalization projects.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
Rates of cell size increase are an important measure of success during the baculovirus infection process. Batch and fed batch cultures sustain large fluctuations in osmolarity that can affect the measured cell volume if this parameter is not considered during the sizing protocol. Where osmolarity differences between the sizing diluent and the culture broth exist, biased measurements of size are obtained as a result of the cell osmometer response. Spodoptera frugiperda (Sf9) cells are highly sensitive to volume change when subjected to a change in osmolarity. Use of the modified protocol with culture supernatants for sample dilution prior to sizing removed the observed error during measurement.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
Certification of an ISO 14001 Environmental Management System (EMS) is currently an important requirement for those enterprises wishing to sell their products in the context of a global market. The system`s structure is based on environmental impact evaluation (EIE). However, if an erroneous or inadequate methodology is applied, the entire process may be jeopardized. Many methodologies have been developed for making of EIEs, some of them are fairly complex and unsuitable for EMS implementation in an organizational context, principally when small and medium size enterprises (SMEs) are involved. The proposed methodology for EIE is part of a model for implementing EMS. The methodological approach used was a qualitative exploratory research method based upon sources of evidence such as document analyses, semi-structured interviews and participant observations. By adopting a cooperative implementation model based on the theory of system engineering, difficulties relating to implementation of the sub-system were overcome thus encouraging SMEs to implement EMS. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a proposal of a systemic model composed for the micro and small companies (MSE) of the region of Ribeiro Preto and the agents which influenced their environment. The proposed model was based on Stafford Beer`s (Diagnosing the system for organizations. Chichester, Wiley, 1985) systemic methodologies VSM (Viable System Model) and on Werner Ulrich`s (1983) CSH (Critical Systems Heuristics). The VSM is a model for the diagnosis of the structure of an organization and of its flows of information through the application of the cybernetics concepts (Narvarte, In El Modelo del Sistema Viable-MSV: experiencias de su aplicacin en Chile. Proyecto Cerebro Colectivo del IAS, Santiago, 2001). On the other hand, CSH focus on the context of the social group applied to the systemic vision as a counterpoint to the organizational management view considered by the VSM. MSE of Ribeiro Preto and Sertozinho had been analyzed as organizations inserted in systems that relate and integrate with other systems concerning the public administration, entities of representation and promotion agencies. The research questions: which are the bonds of interaction among the subsystems in this process and who are the agents involved? The systemic approach not only diagnosed a social group, formed by MSE of Ribeiro Preto and Sertozinho, public authorities and support entities, but could also delineate answers that aimed the clarification of obscure questions generating financial assistance to the formularization of efficient actions for the development of this system.
Resumo:
The electrochemical oxidation of ethanol at Sn((1-x))Ir (x) O(2) electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L(-1) HClO(4) solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon-carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.
Resumo:
The solubilization of an europium (III) beta-diketonate chelate in aqueous medium and the changes in its photophysical properties upon its inclusion into an alpha-cyclodextrin hydrophobic cavity are described. The complex [Eu(tta)(3)center dot(H(2)O)(2)] (tta = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione) was synthesized, characterized, and incorporated into the hydrophobic cavity by stirring in an alpha-cyclodextrin aqueous solution. The inclusion was confirmed by (1)H NMR, and the stoichiometry of association was obtained by the Job method. The maximum in the excitation spectrum of the alpha-CD inclusion compound in aqueous solution was shifted 28 nm compared with the maximum of non alpha-CD complex. The emission spectrum of the association is similar to that of the free solid complex and displays the characteristic (5)D(0) -> (7)F(0-4) Eu(3+) transitions.
Resumo:
The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.
Resumo:
PURPOSE: To determine whether implantation of an aspherical intraocular lens (IOL) results in reduced ocular aberrations and improved contrast sensitivity after cataract surgery without critical reduction of depth of focus. DESIGN: Double-blinded, randomized, prospective study. METHODS: In an intraindividual study of 25 patients with bilateral cataract, an aspherical IOL (Akreos Advanced Optic [AO]; Bausch & Lomb, Inc., Rochester, New York, USA) was implanted in one eye and a spherical IOL (Akreos Fit; Bausch & Lomb, Inc) in the fellow eye. Higher-order aberrations with a 5- and 6-mm pupil were measured with a dynamic retinoscopy aberrometer at 1 and 3 months after surgery. Uncorrected and best-corrected visual acuity and contrast sensitivity under mesopic and photopic conditions also were measured. Distance-corrected near and intermediate visual acuity were studied as a measurement of depth of focus. RESULTS: There was no statistically significant difference between eyes in uncorrected and best-corrected visual acuity at I and 3 months after surgery. There was a statistically significant between-group difference in contrast sensitivity under photopic conditions at 12 cycles per degree and under mesopic conditions at all spatial frequencies. The Akreos AO group obtained statistically significant lower values of higher-order aberrations and spherical aberration with 5- and 6-mm pupils compared with the Akreos Fit group (P < .05). There was no significant difference in distance-corrected near and intermediate visual acuity between both groups. CONCLUSIONS: Aspherical aberration-free Akreos AO IOL induced significantly less higher-order aberrations and spherical aberration than the Akreos Fit. Contrast sensitivity was better under mesopic conditions with the Akreos AO with similar results of depth of focus. (Am J Ophthalmol 2010;149:383-389. (C) 2010 by Elsevier Inc. All rights reserved.)
Resumo:
Contrast echocardiography has been demonstrated useful for left ventricular opacification and improvement of endocardial border delineation. Another important clinical application of this technique refers to the better characterization of cardiac tumors and masses. We here described an asymptomatic patient with cystic mass attached to submitral valve apparatus in which contrast echocardiography was performed after intravenous injection of lipid-encapsulated microbubbles. It resulted in enhancement of the cystic borders and allowed for better definition of its diagnosis. Multislice computed tomography confirmed the echocardiographic findings. This case illustrates the potential of contrast echocardiography to improve the anatomic evaluation of cardiac masses.
Resumo:
Insulin-like growth factor I has similar mitogenic effects to insulin, a growth factor required by most cells in culture, and it can replace insulin in serum-free formulations for some cells. Chinese Hamster Ovary cells grow well in serum-free medium with insulin and transferrin as the only exogenous growth factors. An alternative approach to addition of exogenous growth factors to serum-free medium is transfection of host cells with growth factor-encoding genes, permitting autocrine growth. Taking this approach, we constructed an IGF-I heterologous gene driven by the cytomegalovirus promoter, introduced it into Chinese Hamster Ovary cells and examined the growth characteristics of Insulin-like growth factor I-expressing clonal cells in the absence of the exogenous factor. The transfected cells secreted up to 500 ng/10(6) cells/day of mature Insulin-like growth factor I into the conditioned medium and as a result they grew autonomously in serum-free medium containing transferrin as the only added growth factor. This growth-stimulating effect, observed under both small and large scale culture conditions, was maximal since no further improvement was observed in the presence of exogenous insulin.
Resumo:
Background: Real time myocardial contrast echocardiography (RTMCE) is an emerging imaging modality for assessing myocardial perfusion that allows for noninvasive quantification of regional myocardial blood flow (MBF). Aim: We sought to assess the value of qualitative analysis of myocardial perfusion and quantitative assessment of myocardial blood flow (MBF) by RTMCE for predicting regional function recovery in patients with ischemic heart disease who underwent coronary artery bypass grafting (CABG). Methods: Twenty-four patients with coronary disease and left ventricular systolic dysfunction (ejection fraction < 45%) underwent RTMCE before and 3 months after CABG. RTMCE was performed using continuous intravenous infusion of commercially available contrast agent with low mechanical index power modulation imaging. Viability was defined by qualitative assessment of myocardial perfusion as homogenous opacification at rest in >= 2 segments of anterior or >= 1 segment of posterior territory. Viability by quantitative assessment of MBF was determined by receiver-operating characteristics curve analysis. Results: Regional function recovery was observed in 74% of territories considered viable by qualitative analysis of myocardial perfusion and 40% of nonviable (P = 0.03). Sensitivity, specificity, positive and negative predictive values of qualitative RTMCE for detecting regional function recovery were 74%, 60%, 77%, and 56%, respectively. Cutoff value of MBF for predicting regional function recovery was 1.76 (AUC = 0.77; 95% CI = 0.62-0.92). MBF obtained by RTMCE had sensitivity of 91%, specificity of 50%, positive predictive value of 75%, and negative predictive value of 78%. Conclusion: Qualitative and quantitative RTMCE provide good accuracy for predicting regional function recovery after CABG. Determination of MBF increases the sensitivity for detecting hibernating myocardium. (Echocardiography 2011;28:342-349).