944 resultados para connected networks
Resumo:
Many important problems in communication networks, transportation networks, and logistics networks are solved by the minimization of cost functions. In general, these can be complex optimization problems involving many variables. However, physicists noted that in a network, a node variable (such as the amount of resources of the nodes) is connected to a set of link variables (such as the flow connecting the node), and similarly each link variable is connected to a number of (usually two) node variables. This enables one to break the problem into local components, often arriving at distributive algorithms to solve the problems. Compared with centralized algorithms, distributed algorithms have the advantages of lower computational complexity, and lower communication overhead. Since they have a faster response to local changes of the environment, they are especially useful for networks with evolving conditions. This review will cover message-passing algorithms in applications such as resource allocation, transportation networks, facility location, traffic routing, and stability of power grids.
Resumo:
As ever more devices are connected to the internet, and applications turn ever more interactive, it becomes more important that the network can be counted on to respond reliably and without unnecessary delay. However, this is far from always the case today, as there can be many potential sources of unnecessary delay. In this thesis we focus on one of them: Excess queueing delay in network routers along the path, also known as bufferbloat. We focus on the home network, and treat the issue in three stages. We examine latency variation and queueing delay on the public internet and show that significant excess delay is often present. Then, we evaluate several modern AQM algorithms and packet schedulers in a residential setting, and show that modern AQMs can almost entirely eliminate bufferbloat and extra queueing latency for wired connections, but that they are not as effective for WiFi links. Finally, we go on to design and implement a solution for bufferbloat at the WiFi link, and also design a workable scheduler-based solution for realising airtime fairness in WiFi. Also included in this thesis is a description of Flent, a measurement tool used to perform most of the experiments in the other papers, and also used widely in the bufferbloat community.
Resumo:
Networks have come to occupy a key position in the strategic armoury of the government, business and community sectors and now have impact on a broad array of policy and management arenas. An emphasis on relationships, trust and mutuality mean that networks function on a different operating logic to the conventional processes of government and business. It is therefore important that organizational members of networks are able to adopt the skills and culture necessary to operate successfully under these distinctive kinds of arrangements. Because networks function from a different operational logic to traditional bureaucracies, public sector organizations may experience difficulties in adapting to networked arrangements. Networks are formed to address a variety of social problems or meet capability gaps within organizations. As such they are often under pressure to quickly produce measurable outcomes and need to form rapidly and come to full operation quickly. This paper presents a theoretical exploration of how diverse types of networks are required for different management and policy situations and draws on a set of public sector case studies to understand/demonstrate how these various types of networked arrangements may be ‘turbo-charged’ so that they more quickly adopt the characteristics necessary to deliver required outcomes.