860 resultados para conceptual data modelling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Popular dimension reduction and visualisation algorithms rely on the assumption that input dissimilarities are typically Euclidean, for instance Metric Multidimensional Scaling, t-distributed Stochastic Neighbour Embedding and the Gaussian Process Latent Variable Model. It is well known that this assumption does not hold for most datasets and often high-dimensional data sits upon a manifold of unknown global geometry. We present a method for improving the manifold charting process, coupled with Elastic MDS, such that we no longer assume that the manifold is Euclidean, or of any particular structure. We draw on the benefits of different dissimilarity measures allowing for the relative responsibilities, under a linear combination, to drive the visualisation process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acknowledgements: We thank Iain Malcolm of Marine Scotland Science for access to data from the Girnock and the Scottish Environment Protection Agency for historical stage-discharge relationships. CS contributions on this paper were in part supported by the NERC/JPI SIWA project (NE/M019896/1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd and Marine Scotland for fieldwork and equipment support. Handling and tagging of fulmars was conducted under licences from the British Trust for Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine studentship and LQ was supported by a NERC Studentship. Thanks also to the many colleagues who assisted with fieldwork during the project, and to Helen Bailey and Arliss Winship for advice on implementing the state-space model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Postprint

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd and Marine Scotland for fieldwork and equipment support. Handling and tagging of fulmars was conducted under licences from the British Trust for Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine studentship and LQ was supported by a NERC Studentship. Thanks also to the many colleagues who assisted with fieldwork during the project, and to Helen Bailey and Arliss Winship for advice on implementing the state-space model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robust joint modelling is an emerging field of research. Through the advancements in electronic patient healthcare records, the popularly of joint modelling approaches has grown rapidly in recent years providing simultaneous analysis of longitudinal and survival data. This research advances previous work through the development of a novel robust joint modelling methodology for one of the most common types of standard joint models, that which links a linear mixed model with a Cox proportional hazards model. Through t-distributional assumptions, longitudinal outliers are accommodated with their detrimental impact being down weighed and thus providing more efficient and reliable estimates. The robust joint modelling technique and its major benefits are showcased through the analysis of Northern Irish end stage renal disease patients. With an ageing population and growing prevalence of chronic kidney disease within the United Kingdom, there is a pressing demand to investigate the detrimental relationship between the changing haemoglobin levels of haemodialysis patients and their survival. As outliers within the NI renal data were found to have significantly worse survival, identification of outlying individuals through robust joint modelling may aid nephrologists to improve patient's survival. A simulation study was also undertaken to explore the difference between robust and standard joint models in the presence of increasing proportions and extremity of longitudinal outliers. More efficient and reliable estimates were obtained by robust joint models with increasing contrast between the robust and standard joint models when a greater proportion of more extreme outliers are present. Through illustration of the gains in efficiency and reliability of parameters when outliers exist, the potential of robust joint modelling is evident. The research presented in this thesis highlights the benefits and stresses the need to utilise a more robust approach to joint modelling in the presence of longitudinal outliers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The under-reporting of cases of infectious diseases is a substantial impediment to the control and management of infectious diseases in both epidemic and endemic contexts. Information about infectious disease dynamics can be recovered from sequence data using time-varying coalescent approaches, and phylodynamic models have been developed in order to reconstruct demographic changes of the numbers of infected hosts through time. In this study I have demonstrated the general concordance between empirically observed epidemiological incidence data and viral demography inferred through analysis of foot-and-mouth disease virus VP1 coding sequences belonging to the CATHAY topotype over large temporal and spatial scales. However a more precise and robust relationship between the effective population size (

Relevância:

40.00% 40.00%

Publicador:

Resumo:

European sea bass, Dicentrarchus labrax, is a highly valuable species in Europe, both for aquaculture in the Mediterranean Sea and for commercial and recreational fisheries in the North East Atlantic Ocean. Subjected to increasing fishing pressure, the wild population has recently experienced significant recruitment fluctuation as well as a northward extension of its distribution area in the North Sea. While the nature of the ecological and/or physiological processes involved remains unresolved, ontogenetic habitat shifts and adult site fidelity could increase the species’ vulnerability to climate change and overfishing. As managers look for expert information to propose management scenarios leading to sustainable exploitation, exploratory modelling appears to be a cost-efficient approach to enhance the understanding of recruitment dynamics and the spatio-temporal scales over which fish populations function. A conceptual modelling framework and its specific data requirements are discussed to tackle some sound ecological questions regarding this species. We consequently provide an updated review of current knowledge on bass population structure, biology and ecology. This paper will hence be particularly valuable to develop spatially-explicit models of European sea bass dynamics under environmental and anthropogenic forcing. Knowledge gaps requiring further research efforts are also reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-agent systems offer a new and exciting way of understanding the world of work. We apply agent-based modeling and simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between people management practices on the shop-floor and retail performance. Despite the fact we are working within a relatively novel and complex domain, it is clear that using an agent-based approach offers great potential for improving organizational capabilities in the future. Our multi-disciplinary research team has worked closely with one of the UK’s top ten retailers to collect data and build an understanding of shop-floor operations and the key actors in a department (customers, staff, and managers). Based on this case study we have built and tested our first version of a retail branch agent-based simulation model where we have focused on how we can simulate the effects of people management practices on customer satisfaction and sales. In our experiments we have looked at employee development and cashier empowerment as two examples of shop floor management practices. In this paper we describe the underlying conceptual ideas and the features of our simulation model. We present a selection of experiments we have conducted in order to validate our simulation model and to show its potential for answering “what-if” questions in a retail context. We also introduce a novel performance measure which we have created to quantify customers’ satisfaction with service, based on their individual shopping experiences.