976 resultados para combustion turbine
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increased fuel economy and driveability of modern internal combustion engine vehicles (ICEVs) are the result of the application of advanced digital electronics to control the operation of the internal combustion engine (ICE). Microprocessors (and micro controllers) play a key role in the engine control, by precisely controlling the amount of both air and fuel admitted into the cylinders. Air intake is controlled by utilizing a throttle valve equipped with a motor and gear mechanism as actuator, and a sensor enabling the measurement of the angular position of the blades. This paperwork presents a lab setup that allows students to control the throttle position using a microcontroller that runs a program developed by them. A commercial throttle body has been employed, whereas a power amplifier and a microcontroller board have been hand assembled to complete the experimental setup. This setup, while based in a high-tech, microprocessor-based solution for a real-world, engine operation optimization problem, has the potential to engage students around a hands-on multidisciplinary lab activity and ignite their interest in learning fundamental and advanced topics of microprocessors systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The performance and emissions behavior of a Rover 1S/60 turboshaft engine when operated with several blends of aviation kerosene and ox tallow ethyl-ester are shown in this article. The tests were performed with a compressor shaft coupled to an hydraulic dynamometer where data of power and mass fuel flow were collected to determine the brake specific fuel consumption. A flue gas analyzer was positioned at the exhaust duct to collect oxygen, carbon dioxide, carbon monoxide and nitrous oxides. An increase in the specific fuel consumption was observed due to the lesser lower heating value of the most oxygenated blends. However, reductions of CO, CO2 and NO (x) have been observed and no-significant ill effects have occurred in the turbine operation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this work is to study the implantation feasibility of a small hydropower system in a rural area in Guaratinguetá. Due to its location and accessibility, and the costs involved in extending the public distribution line to the property it could turn become viable the construction of an individual electric generation system. As alternatives, a solar photovoltaic system and combustion engine-electric generator systems were considered. However, the existence of a small river inside the property, the construction of a micro hydropower plant was taken into account. The choice of the micro power hydropower plant was determined by the owner and was based on the costs. The topographic and hydrological profiles as well as the geometrical characteristics of the system, including the civil infrastructure needed and the more adequate turbine, were determined. Finally, the cost spreadsheet was set and the results were compared with those calculated for the extension of the available public distribution system
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces
Resumo:
Using oxygen instead of air in a burning process is at present being widely discussed as an option to reduce CO2 emissions. One of the possibilities is to maintain the combustion reaction at the same energy release level as burning with air, which reduces fuel consumption and the emission rates of CO2. A thermal simulation was made for metal reheating furnaces, which operate at a temperature in the range of 1150-1250 degrees C, using natural gas with a 5% excess of oxygen, maintaining fixed values for pressure and combustion temperature. The theoretical results show that it is possible to reduce the consumption of fuel, and this reduction depends on the amount of heat that can be recovered during the air pre-heating process. The analysis was further conducted by considering the 2012 costs of natural gas and oxygen in Brazil. The use of oxygen showed to be economically viable for large furnaces that operate with conventional heat recovering systems (those that provide pre-heated air at temperatures near 400 degrees C). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
One of the energy alternatives that provide utility, flexibility, cleanliness and economy is biomass, such as forest waste (wood) and agricultural (sugarcane bagasse, rice husks, coffee pods, etc.). However, with its increasing supply and use grows also the concern of industries to invest in monitoring and control of emissions into the atmosphere, because during biomass burning are emitted as exhaust gases, fine particles known as particulates, which greatly contribute to the triggering of serious health problems to humans, in addition to the environmental damage. With that, this work aimed to conduct a monitoring of particulate and gaseous pollutants emissions to the atmosphere from the burning of various types of biomass used by industries. The equipment used for sampling were the optical monitor DataRAM 4 and the Unigas3000 + gas sampler. The results showed that biomass coffee pods presented the greatest concentration of particulates (485119 μg m-3) with particle diameters between 0.0602 μm and 0.3502 μm, i.e. the most ultrafine particles, harmful to human health and the environment. The largest emissions of CO and NOx were observed, respectively, for the coffee pods (3500 ppm) and for the rice husk (48 ppm). As for the superior calorific value (PCS), the best of fuel, with higher PCS, was the Eucalyptus grandis.