956 resultados para cobalt hexacyanoferrate
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Chromium hexacyanoferrate (CrHCF) modified grassy carbon electrode (GC) in different electrolytes was studied by cyclic voltammetry and in situ FTIR spectroelectrochemistry. The results indicate that the behavior of CrHCF firm can be understood in term of two structures: Cr1/3Cr(III)Fe(II)(CN), and MCr(III)Fe(II)(CN)(6). Besides,the film exists in amorphous state: the outer layer is porous film, while the inner layer is relatively compact. According to the electrochemical reaction of CrHCF, the lattice can contract and expand with the cations' diffusion.
Resumo:
A new series of mixed conducting oxides, Sr10-n/2BinFe20Om (n = 4, 6, 8, 10), were synthesized by a solid state reaction method, and they have high oxygen permeability. The oxygen permeation rate at 1150 K is 0.41 ml(STD)/ cm(2).min for n = 6 and 0.90 ml(STD)/cm(2).min for n = 10, which is two times higher than that for Sr1-xBixFeO3 (x = 0.5). For the Sr1-xBixFeO3 (x = 0.1, 0.3, 0.5) series, the oxygen flux increases with increasing Bi content. (C) 1998 Elsevier Science Ltd.
Resumo:
Cobalt(II)-cyanoferrate polymeric film has been electrochemically deposited on a glassy carbon electrode and investigated by cyclic voltammetry and in-situ reflection FTIR spectroscopy. A reorientation of the terminal C=N groups upon redox reactions was proposed. The stretching vibration mode of the terminal C=N groups associated with Fe(III) was observed at 2122 cm(-1), however, the stretching vibration mode for terminal groups associated with Fe(II) did not appear. This process could result in a switch between lattice-closed and lattice-opened surface structure. (C) 1997 Elsevier Science B.V.
Resumo:
Two stable redox couples, accompanying clear color switches between yellow green and blue, can be observed when the VHCF-coated film platinum electrodes are cyclic potential scanned in 3.6 M H2SO4 and 0.2 M K2SO4 electrolyte solution. Electrochemical results and in situ Fourier transfer infrared (FT-IR) spectroscopy demonstrate that the redox reaction of the electroactive iron sites is related to the first redox couple (E-1/2 = 0.81 V) while the second redox couple (E-1/2 = 1.01 V) is due to the redox reactions of the electroactive vanadyl ions. Under the proper conditions, such as in high acidic solutions or thin films (deposition time is less than 2 min) and so on, the third redox couple (E-1/2 = 0.89-0.94 V) can be observed on the cyclic voltammograms, which originates from the redox reactions of the interstitial vanadyl ions. This electrochemical reaction mechanism is investigated by in situ probe beam deflection technique, exchange of K+ ions accompanies with redox reaction of the iron sites, but for redox reaction of the vanadyl ions, both H+ ions, K+ ions and water molecules are involved.
Resumo:
The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.
Resumo:
An acetylcholinesterase (AChE) activity detection system was fabricated based on the electrocatalysis of cobalt(II) tetraphenylporphyrin of the electrooxidation of thiocholine chloride, which is the product of the hydrolysis of acetylthiocholine chloride by AChE. A simple modified method was used to form the base electrode. AChE was cross-linked on the base electrode by glutaraldehyde. The optimum working conditions are discussed and the characteristics of the detection system are evaluated.
Resumo:
Cobalt(II) phenanthroline and 8-hydroxyquinoline complexes/Y zeolite, denoted as CoPhen/Y and CoOx/Y respectively, were prepared, The formation of the metal complexes mentioned above within the cages of Y zeolite and their crystal structures were determined by elementary analyses, TG-DTA, diffuse reflectance UV-Vis, SEM, BET and XRD methods. The influence of experimental parameters upon phenol conversion and product selectivities was investigated as well.
Resumo:
Probe beam deflection(PBD) technique together with electrochemical techniques such as cyclic voltammetry was used to study the ion exchange in prussian blue(PB) film and its analogue indium hexacyanoferrate (InHCF) chemically modified electrodes, The ion exchange mechanism of PB was verified as following: K2Fe2+FeI(CN)(6)(-e--K+)reversible arrow(+e-+K+)KFe(3+)Fe(I)(CN)(6)(-xe--xK+)reversible arrow(+xe-+xK+) [Fe3+FeI(CN)(6)](x)[KFe3+FeI(CN)(6)](1-x) where on reduction in contact with an acidic KCl electrolyte, H+ enter PB film before K+. Both the cations and anions participate concurrently in the redox process of InHCF, meanwhile K+ ion plays a major role in the whole charge transfer process of this film with increasing radii of anions.
Resumo:
Iron, cobalt and copper phthalocyanines/Y zeolite, denoted as FePcY, CoPcY and CuPcY respectively,were prepared. The formation of metal phthalocyanine compounds within the cages of Y zeolite and their crystal structures were determined by elementary analyses, IR, UV-Vis, TG, BET, and XRD methods; The influence of experimental parameters upon phenol conversion and product selectivities was investigated as well.
VALENCE STATE EQUILIBRIA BETWEEN COBALT AND MANGANESE IONS AND MAGNETIC-PROPERTIES OF LACO0.9MN0.1O3
Resumo:
According to the thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion and the high spin state Co3+ (t2g4e(g)2) ion and between the cobalt and manganese ions with different valence state and spin state, an approximate semiempirical f
Resumo:
Three new oxides Sm2SrCo2O7, Sm2BaCo2O7 and Gd2SrCo2O7 have been successfully synthesized by a solid state reaction method.The X - Ray diffraction spectra show that they are all isostructural with Sr8Ti 2O7, Ln2SrCo2O7(Ln=Sm, Gd) crystallized in the tetra
Resumo:
On the basis of the spin and valence state equilibria and superexchange interaction of the various cobalt ions in LaCoO3, an approximate semiempirical formula has been proposed and used to calculate magnetic susceptibilities of LaCoO3 over a wide temperature range (100-1200 K). The results indicate that there are thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion, the high spin state Co3+ (t2g4e(g)2) ion, the Co(II) (t2g6e(g)1) ion and the Co(IV) (t2g5e(g)0) ion in LaCoO3. The energy difference between the low spin state Co(III) and the high spin state Co3+ is about 0.006 eV. The content of the low spin state Co(III) ion is predominant in LaCoO3 and the content of the high spin state Co3+ ion varies with temperature, reaching a maximum at about 350 K, then decreasing gradually with increasing temperature. At low temperature the contents of the Co(II) ion and the Co(IV) ion in LaCoO3 are negligible, while above 200 K the contents of both the Co(II) ion and the Co(IV) ion increase with increasing temperature; however, the content of the Co(II) ion always is larger than that of the Co(IV) ion at any temperature. These calculated results are in good agreement with experimental results of the Mossbauer effect, magnetic susceptibility and electrical conductivity of LaCoO3.