996 resultados para circular cup drawing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper control of oblique vortex shedding in the wake behind a straight circular cylinder is explored experimentally and computationally. Towards this, steady rotation of the cylinder about its axis is used as a control device. Some limited studies are also performed with a stepped circular cylinder, where at the step the flow is inevitably three-dimensional irrespective of the rotation rate. When there is no rotation, the vortex shedding pattern is three dimensional as described in many previous studies. With a non-zero rotation rate, it is demonstrated experimentally as well as numerically that the shedding pattern becomes more and more two-dimensional. At sufficiently high rotation rates, the vortex shedding is completely suppressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of two long unsupported circular parallel tunnels aligned horizontally in fully cohesive and cohesive-frictional soils has been determined. An upper bound limit analysis in combination with finite elements and linear programming is employed to perform the analysis. For different clear spacing (S) between the tunnels, the stability of tunnels is expressed in terms of a non-dimensional stability number (gamma H-max/c); where H is tunnel cover, c refers to soil cohesion, and gamma(max) is maximum unit weight of soil mass which the tunnels can bear without any collapse. The variation of the stability number with tunnels' spacing has been established for different combinations of H/D, m and phi; where D refers to diameter of each tunnel, phi is the internal friction angle of soil and m accounts for the rate at which the cohesion increases linearly with depth. The stability number reduces continuously with a decrease in the spacing between the tunnels. The optimum spacing (S-opt) between the two tunnels required to eliminate the interference effect increases with (i) an increase in H/D and (ii) a decrease in the values of both m and phi. The value of S-opt lies approximately in a range of 1.5D-3.5D with H/D = 1 and 7D-12D with H/D = 7. The results from the analysis compare reasonably well with the different solutions reported in literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled wavenumbers in infinite fluid-filled isotropic and orthotropic cylindrical shells are considered. Using the Donnell-Mushtari (DM) theory for thin shells, compact and elegant asymptotic expansions for the wavenumbers are found at an intermediate fluid loading for both the coupled rigid-duct modes (''fluid-originated'') and the coupled structural wavenumbers (''structure-originated modes'') over the entire frequency range where DM theory is valid. The coupled rigid-duct expansions are found to be valid for O(1) orthotropy and for all circumferential orders, whereas the coupled structural wavenumber expansions are valid for small orthotropy and for low circumferential orders. These two above results are then used to derive the expansions for a set of multiple complex roots that display a locking behavior at this intermediate fluid-loading. The expansions are matched with the numerical solutions of the coupled dispersion relation and the match is found to be good over most of the frequency range. (C) 2014 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of a long circular tunnel in a cohesive frictional soil medium has been determined in the presence of horizontal pseudo-static seismic body forces. The tunnel is supported by means of lining and anchorage system which is assumed to exert uniform internal compressive normal pressure on its periphery. The upper bound finite element limit analysis has been performed to compute the magnitude of the internal compressive pressure required to support the tunnel. The results have been presented in terms of normalized compressive normal stress, defined in terms of sigma(i)/c; where sigma(i) is the magnitude of the compressive normal pressure on the periphery of the tunnel and c refers to soil cohesion. The variation of sigma(i)/c with horizontal earthquake acceleration coefficient (alpha(h)) has been established for different combinations of H/D, gamma D/c and phi where (i) H and D refers to tunnel cover and diameter, respectively, and (ii) gamma and phi correspond to unit weight and internal friction angle of soil mass, respectively. Nodal velocity patterns have also been plotted for assessing the zones of significant plastic deformation. The analysis clearly reveals that an increase in the magnitude of the earthquake acceleration leads to a significant increment in the magnitude of internal compressive pressure. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology has been presented for determining the stability of unsupported vertical cylindrical excavations by using an axisymmetric upper bound limit analysis approach in conjunction with finite elements and linear optimization. For the purpose of excavation design, stability numbers (S-n) have been generated for both (1) cohesive-frictional soils and (2) pure cohesive soils, with an additional provision accounting for linearly increasing cohesion with increasing depth by means of a nondimensional factor m. The variation of S-n with H/b has been established for different values of m and phi, where H and b refer to the height and radius of the cylindrical excavation. A number of useful observations have been gathered about the variation of the stability number and nodal velocity patterns as H/b, phi, and m change. The results of the analysis compare quite well with the different solutions reported in the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets, has been determined by using the upper bound theorem of the limit analysis in conjunction with finite elements and linear optimization. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (N-c and N-gamma) with an inclusion of the reinforcement has been computed in terms of the efficiency factors eta(c) and eta(gamma). The results have been obtained (i) for different values of phi in case of fully granular (c=0) and c-phi soils, and (ii) for different rates (m) at which the cohesion increases with depth for a purely cohesive soil (phi=0 degrees). The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in phi. The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The results obtained from the study are found to compare well with the available theoretical and experimental data reported in literature. (C) 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented for determining the ultimate bearing capacity of a circular footing reinforced with a horizontal circular sheet of reinforcement placed over granular and cohesive-frictional soils. It was assumed that the reinforcement sheet could bear axial tension but not the bending moment. The analysis was performed based on the lower-bound theorem of the limit analysis in combination with finite elements and linear optimization. The present research is an extension of recent work with strip foundations reinforced with different layers of reinforcement. To incorporate the effect of the reinforcement, the efficiency factors eta(gamma) and eta(c), which need to be multiplied by the bearing capacity factors N-gamma and N-c, were established. Results were obtained for different values of the soil internal friction angle (phi). The optimal positions of the reinforcements, which would lead to a maximum improvement in the bearing capacity, were also determined. The variations of the axial tensile force in the reinforcement sheet at different radial distances from the center were also studied. The results of the analysis were compared with those available from literature. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The entropy generation due to mixed convective heat transfer of nanofluids past a rotating circular cylinder placed in a uniform cross stream is investigated via streamline upwind Petrov-Galerkin based finite element method. Nanosized copper (Cu) particles suspended in water are used with Prandtl number (Pr)=6.9. The computations are carried out at a representative Reynolds number (Re) of 100. The dimensionless cylinder rotation rate, a, is varied between 0 and 2. The range of nanoparticle volume fractions (phi) considered is 0 <= phi <= 5%. Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number (Ri) as 0.5 and 1.0. A new model for predicting the effective viscosity and thermal conductivity of dilute suspensions of nanoscale colloidal particles is presented. The model addresses the details of the agglomeration-deagglomeration in tune with the pertinent variations in the effective particulate dimensions, volume fractions, as well as the aggregate structure of the particulate system. The total entropy generation is found to decrease sharply with cylinder rotation rates and nanoparticle volume fractions. Increase in nanoparticle agglomeration shows decrease in heat transfer irreversibility. The Bejan number falls sharply with increase in alpha and phi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microneedle technology is one of the attractive methods in transdermal drug delivery. However, the clinical applications of this method are limited owing to: complexity in the preparation of multiple coating solutions, drug leakage while inserting the microneedles into the skin and the outer walls of the solid microneedle can hold limited quantity of drug. Here, the authors present the fabrication of an array of rectangular cup shaped silicon microneedles, which provide for reduced drug leakage resulting in improvement of efficiency of drug delivery and possibility of introducing multiple drugs. The fabricated solid microneedles with rectangular cup shaped tip have a total height of 200 mu m. These cup shaped tips have dimensions: 60 x 60 mu m (length x breadth) with a depth of 60 mu m. The cups are filled with drug using a novel in-house built drop coating system. Successful drug dissolution was observed when the coated microneedle was used on mice. Also, using the above method, it is possible to fill the cups selectively with different drugs, which enables simultaneous multiple drug delivery. (C) 2015 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bearing capacity of a circular footing lying over fully cohesive strata, with an overlaying sand layer, is computed using the axisymmetric lower bound limit analysis with finite elements and linear optimization. The effects of the thickness and the internal friction angle of the sand are examined for different combinations of c(u)/(gamma b) and q, where c(u)=the undrained shear strength of the cohesive strata, gamma=the unit weight of either layer, b=the footing radius, and q=the surcharge pressure. The results are given in the form of a ratio (eta) of the bearing capacity with an overlaying sand layer to that for a footing lying directly over clayey strata. An overlaying medium dense to dense sand layer considerably improves the bearing capacity. The improvement continuously increases with decreases in c(u)/(gamma b) and increases in phi and q/(gamma b). A certain optimum thickness of the sand layer exists beyond which no further improvement occurs. This optimum thickness increases with an increase in 0 and q and with a decrease in c(u)/(gamma b). Failure patterns are also drawn to examine the inclusion of the sand layer. (C) 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. (C) 2015 Acoustical Society of America.