953 resultados para chitin binding activity
Resumo:
Im Mittelpunkt dieser Arbeit stand das große L-Hüllprotein (L) des Hepatitis B - Virus. L bildet eine ungewöhnliche duale Topologie in der ER-Membran aus, welche auch im reifen Viruspartikel erhalten bleibt. In einem partiellen, posttranslationalen Reifungsprozess wird die sogenannte PräS-Region von der zytosolischen Seite der Membran aus in das ER-Lumen transloziert. Aufgrund seiner dualen Topologie und der damit verbundenen Multifunktionalität übernimmt L eine Schlüsselfunktion im viralen Lebenszyklus. Ein Schwerpunkt dieser Arbeit lag deshalb darin, neue zelluläre Interaktionspartner des L-Hüllproteins zu identifizieren. Ihre Analyse sollte helfen, das Zusammenspiel des Virus mit der Wirtszelle besser zu verstehen. Hierfür wurde das Split - Ubiquitin Hefe - Zwei - Hybrid System eingesetzt, das die Interaktionsanalyse von Membranproteinen und Membran-assoziierten Proteinen ermöglicht. Zwei der neu identifizierten Interaktionspartner, der v-SNARE Bet1 und Sec24A, die Cargo-bindende Untereinheit des CoPII-vermittelten vesikulären Transports, wurden weitergehend im humanen Zellkultursystem untersucht. Sowohl für Bet1 als auch für Sec24A konnte die Interaktion mit dem L-Hüllprotein bestätigt und der Bindungsbereich eingegrenzt werden. Die Depletion des endogenen Bet1 reduzierte die Freisetzung L-haltiger, nicht aber S-haltiger subviraler Partikel (SVP) deutlich. Im Gegensatz zu Bet1 interagierte Sec24A auch mit dem mittleren M- und kleinen S-Hüllprotein von HBV. Die Inhibition des CoPII-vermittelten vesikulären Transportweges durch kombinierte Depletion der vier Sec24 Isoformen blockierte die Freisetzung sowohl L- als auch S-haltiger SVP. Dies bedeutet, dass die HBV - Hüllproteine das ER CoPII-vermittelt verlassen, wobei sie aktiv Kontakt zur Cargo-bindenden Untereinheit Sec24A aufnehmen. Der effiziente Export der Hüllproteine aus dem ER ist für die Virusmorphogenese und somit für den HBV - Lebenszyklus essentiell. rnEin weiterer Schwerpunkt dieser Arbeit basierte auf der Interaktion des L-Hüllproteins mit dem ER-luminalen Chaperon BiP. In der vorliegenden Arbeit wurde überprüft, ob BiP, ähnlich wie das zytosolische Chaperon Hsc70, an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt ist. Hierfür wurde BiP durch die ektopische Expression seiner Ko-Chaperone BAP und ERdj4 in seiner Substrat-bindenen Kapazität manipuliert. ERdj4, ein Mitglied der Hsp40 - Proteinfamilie, stimuliert die ATPase-Aktivität von BiP, was die Substratbindung stabilisiert. Der Nukleotid - Austauschfaktor BAP hingegen vermittelt die Auflösung des BiP - Substrat - Komplexes. Die Auswirkung der veränderten in vivo-Aktivität von BiP auf die posttranslationale PräS-Translokation wurde mit Proteaseschutz - Versuchen untersucht. Die ektopische Expression des positiven als auch des negativen Regulators von BiP resultierte in einer drastischen Reduktion der posttranslationalen PräS-Translokation. Ein vergleichbarer Effekt wurde nach Manipulation des BiP ATPase - Zyklus durch Depletion der zellulären ATP - Konzentration beobachtet. Dies spricht dafür, dass das ER-luminale Chaperon BiP, zusammen mit Hsc70, eine zentrale Rolle in der Ausbildung der dualen Topologie des L-Hüllproteins spielt. rnZwei weitere Proteine, Sec62 und Sec63, die sich für die posttranslationale Translokation in der Hefe als essentiell erwiesen haben, wurden in die Analyse der dualen Topologie des L-Hüllproteins einbezogen. Interessanterweise konnte eine rein luminale Ausrichtung der PräS-Region nach kombinierter Depletion des endogenen Sec62 und Sec63 beobachtet werden. Dies deutet an, dass sowohl Sec62 als auch Sec63 an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt sind. In Analogie zur Posttranslokation der Hefe könnte Sec62 als Translokon-assoziierter Rezeptor für Substrate der Posttranslokation, und damit der PräS-Region, dienen. Sec63 könnte mit seiner J-Domäne BiP zum Translokon rekrutieren und daraufhin dessen Substrat-bindende Aktivität stimulieren. BiP würde dann, einer molekularen Ratsche gleich, die PräS-Region durch wiederholtes Binden und Freisetzen aktiv in das ER-Lumen hereinziehen, bis eine stabile duale Topologie des L-Hüllproteins ausgebildet ist. Die Bedeutung von Sec62 und Sec63 für den HBV - Lebenszyklus wird dadurch untermauert, dass sowohl die ektopische Expression als auch die Depletion des endogenen Sec63 die Freisetzung L-haltiger SVP deutlich reduziert. rn
Resumo:
The intracellular parasite Theileria induces uncontrolled proliferation and host cell transformation. Parasite-induced transformation is accompanied by constitutive activation of IkappaB kinase (IKK), resulting in permanently high levels of activated nuclear factor (NF)-kappaB. IKK activation pathways normally require heat shock protein 90 (Hsp90), a chaperone that regulates the stability and activity of signalling molecules and can be blocked by the benzoquinone ansamycin compound geldanamycin (GA). In Theileria-transformed cells, IkappaBalpha and p65 phosphorylation, NF-kappaB nuclear translocation and DNA binding activity are largely resistant to GA and also NF-kappaB-dependent reporter gene expression is only partly affected. Our findings indicate that parasite-induced IKK activity does not require functional Hsp90.
Resumo:
Malignant pleural mesotheliomas (MPMs) are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14(ARF), an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14(ARF) expression and the presence of SV40 large T antigen (L-Tag) result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, and treatment of p14(ARF)-deficient cells with cisplatin (CDDP) increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21(WAF), PIG3, MDM2, Bax, and PUMA increased in p14(ARF)-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14(ARF)-deficient cells, and treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1) inhibition of MDM2 (using nutlin-3); 2) transient overexpression of p14(ARF); and 3) targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14(ARF) in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.
Resumo:
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract, but the mucosal immune response directed against surface components of this organism has not been characterized in detail. The aim of this study was to investigate the salivary immunoglobulin A (IgA) response toward outer membrane proteins (OMP) of M. catarrhalis in healthy adults, the group of individuals least likely to be colonized and thus most likely to display mucosal immunity. Unstimulated saliva samples collected from 14 healthy adult volunteers were subjected to IgA immunoblot analysis with OMP preparations of M. catarrhalis strain O35E. Immunoblot analysis revealed a consistent pattern of IgA reactivity, with the appearance of five major bands located at >250, 200, 120, 80, and 60 kDa. Eleven (79%) of 14 saliva samples elicited reactivity to all five bands. Immunoblot analysis with a set of isogenic knockout mutants lacking the expression of individual OMP was used to determine the identities of OMP giving rise to IgA bands. Human saliva was shown consistently to exhibit IgA-binding activity for oligomeric UspA2 (>250 kDa), hemagglutinin (200 kDa), monomeric UspA1 (120 kDa), transferrin-binding protein B (TbpB), monomeric UspA2, CopB, and presumably OMP CD. TbpB, oligomeric UspA2, and CopB formed a cluster of bands at about 80 kDa. These data indicate that the human salivary IgA response is directed consistently against a small number of major OMP, some of which are presently considered vaccine candidates. The functional properties of these mucosal antibodies remain to be elucidated.
Resumo:
BACKGROUND: Specificities for carbohydrate IgG antibodies, thought to be predominantly of the IgG2 subclass, have never been broadly examined in healthy human subjects. OBJECTIVE: To examine commercial intravenous immunoglobulin (IVIG) preparations for their ability to recognize a wide range of glycans and to determine the contribution of IgG2 to the binding pattern observed. METHODS: We used a glycan microarray to evaluate IVIG preparations and a control mix of similar proportions of human myeloma IgG1 and IgG2 for binding to 377 glycans, courtesy of the Consortium for Functional Glycomics Core H. Glycans recognized were categorized using public databases for their likely cellular sources. IgG2 was depleted from IVIG by using immunoaffinity chromatography, and depletion was confirmed by using nephelometry and surface plasmon resonance. RESULTS: Nearly half of the glycans bound IgG. Some of the glycans with the greatest antibody binding can be found in structures of human pathogenic bacteria (eg, Streptococcus pneumoniae, Mycobacterium tuberculosis, Vibrio cholera) and nonpathogenic bacteria, including LPS and lipoteichoic acid, capsular polysaccharides, and exopolysaccharides. Surprisingly, depletion of IgG2 had only a modest effect on anticarbohydrate recognition patterns compared with the starting IVIG preparation. Little to no binding activity was detected to human endogenous glycans, including tumor-associated antigens. CONCLUSIONS: This novel, comprehensive analysis provides evidence that IVIG contains a much wider range than previously appreciated of anticarbohydrate IgG antibodies, including those recognizing both pathogenic and non-pathogen-associated prokaryotic glycans.
Resumo:
AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy
Resumo:
Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.
Resumo:
Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.
Resumo:
Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.
Resumo:
Interleukin-2 activated lymphocytes, designated lymphokine-activated killers (LAK), acquire the unique capacity to express potent cytologic activity against a broad spectrum of abnormal and/or transformed NK-sensitive and NK-resistant target cells while sparing normal cell types. Investigations into the target spectra exhibited by cloned effector cells indicate that LAK cells express a polyspecific recognition mechanism that identifies an undefined class of cell surface-associated molecules expressed on susceptible targets. This report extends our previous investigations into the biochemical nature of these molecules by characterizing the functional role of two tumor cell-surface-associated epitopes implicated in conferring target cells with susceptibility to LAK-mediated cytotoxicity. The first moiety is implicated in the formation of effector/target cell conjugates. This binding ligand is preferentially expressed on tumor cells relative to LAK-resistant PBL target cells, sensitive to trypsin treatment, resistant to functional inactivation by heat- and detergent-induced conformational changes, and does not require N-linked glycosylation to maintain binding activity. In contrast, a carbohydrate-associated epitope represents the second tumor-associated molecule required for target cell susceptibility to LAK cells. Specifically, N-linked glyoprotein synthesis represents an absolute requirement for post-trypsin recovery of target cell susceptibility. The minimal N-linked oligosaccharide residue capable of restoring this second signal has been identified as a high mannose structure. Although ultimately required for tumor cell susceptibility, as measured in $\sp{51}$Cr-release assays, this N-glycan-associated molecule is not required for the differential tumor cell binding expressed by LAK cells. Furthermore, N-glycan expression is not adequate in itself to confer target cell susceptibility. Additional categories of cell surface components have been investigated, including O-linked oligosaccharides, and glycosaminoglycans, without identifying additional moieties relevant to target cell recognition. Collectively, these data suggest that tumor cell recognition by LAK cells is dependent on cell surface presentation of two epitopes: a trypsin-sensitive molecule that participates in the initial conjugate formation and an N-glycan-associated moiety that is involved in a post-binding event required for target cell killing. ^
Resumo:
The Spec genes of the sea urchin Stronylocentrotus purpuratus serves as an excellent model for studying cell type-specific gene expression during early embryogenesis. The Spec1/Spec2 genes encode cytosolic calcium-binding proteins related to the calmodulin/troponin C/myosin light chain superfamily. Members of the Spec gene family are activated shortly after the sixth cleavage as the lineage-specific founder cells giving rise to aboral ectoderm are established, and the accumulation of the Spec mRNAs is limited exclusively to aboral ectoderm cell lineages. In this dissertation, the transcriptional regulation of the Spec genes was studied. Sequence comparisons of the Spec gene 5$\sp\prime$ flanking regions showed that a DNA block of approximately 800 bp from the 3$\sp\prime$ end of the first exon to the 5$\sp\prime$ end of a repetitive DNA element, termed RSR, was highly conserved. In Spec2a, the conserved region was a continuous stretch of DNA, but in Spec1 and Spec2c, DNA insertions interrupt the conserved sequence block and alter the relative placement of the RSR element and other 5$\sp\prime$ flanking DNA. Thus, drastic rearrangements have occurred within the putative control regions of the Spec genes. In vivo expression experiments using the sea urchin embryo gene-transfer system showed that while the 5$\sp\prime$ flanking regions of all three Spec genes conferred proper temporal activation to the reporter CAT gene, only the Spec2a 5$\sp\prime$ flanking region could restrict lacZ gene expression to aboral ectoderm cells. However, the Spec2a conserved region alone was not sufficient to confer proper spatial expression, suggesting that negative spatial elements are also associated with the proper activation of Spec2a. A major positive regulatory region, defined as the RSR enhancer, was identified between base pairs $-$631 and $-$443 on Spec2a. The RSR enhancer was essential for maximal activity and conferred preferential aboral ectoderm expression to a lacZ reporter gene. DNaseI footprinting and band-shift analysis of the RSR enhancer revealed multiple DNA-elements. One of the elements, an A/T-rich sequence called the A/T palindrome was studied in detail. This element binds a single 45-kDa nuclear protein, the A/T palindrome binding protein (A/TBP), whose DNA-binding specificity suggests a possible relationship with the bicoid-class homeodomain proteins. Mutated A/T palindromes are incapable of binding the 45-kDa protein and lower promoter activity by 8-fold. DNA-binding activity for A/TBP is low in unfertilized eggs, increases by the 16-cell stage and continues rising in blastulae. These data suggest that A/TBP plays a major role in the activation of the Spec2a gene in aboral ectoderm cells. ^
Resumo:
The 14.5 kDa (galectin-1) and 31 kDa (galectin-3) lectins are the most well characterized members of a family of vertebrate carbohydrate-binding proteins known as the galectins. Evidence has been obtained implicating these galectins in events as diverse as cell-cell and cell-extracellular matrix interactions, growth regulation, transformation, differentiation, and programmed cell death. In the present study, sodium butyrate was found to be a potent inducer of galectin-1 in the KM12 human colon carcinoma cell line. Prior to treatment with butyrate this cell line expresses only galectin-3. These cells were utilized as an in vitro model system to study galectin expression as well as that of their endogenous ligands. The initial phase of this project involved the examination of the induction of galectin-1 by butyrate at the protein level. These studies indicated that galectin-1 induction by butyrate was relatively rapid reaching nearly maximal levels after only 24 hours. Additionally, the induction was found to be reversible upon the removal of butyrate and to precede the increase in expression of the well characterized differentiation marker, carcinoembryonic antigen (CEA). The second phase of this project involved the characterization of potential glycoprotein ligands for galectin-1 and galectin-3. This work demonstrated that the polylactosaminoglycan-containing glycoproteins laminin, CEA, and the lysosome-associated glycoproteins-1 and -2 (LAMPs-1 and -2) are capable of serving as ligands for both galectin-1 and -3. The third phase of this project involved the analysis of the induction of the galectin-1 promoter by butyrate. Through the analysis of deletion constructs transiently transfected into KM12 cells, the region of the galectin-1 promoter mediating a high level of induction by butyrate was localized primarily within a proximal portion of the promoter containing a CCAAT element and an Sp1 binding site. The CCAAT-binding activity in the KM12 nuclear extracts was subsequently dentified as NF-Y by gel shift analysis. These studies suggest that: (1) the galectins may be involved in modulating adhesive interactions in human colon carcinoma cells through the binding of several polylactosaminoglycans shown to play a role in adhesion and (2) high level induction of the galectin-1 promoter by butyrate can proceed through a discreet, proximal element containing an NF-Y-binding CCAAT box and an Sp1 site. ^
Resumo:
USF, Upstream Stimulatory Factor, is a family of ubiquitous transcription factors that contain highly conserved basic helix-loop-helix leucine zipper DNA binding domains and recognize the core DNA sequence CACGTG. In human and mouse, two members of the USF family, USF1 and USF2, encoded by two different genes, contribute to the USF activity. In order to gain insights into the mechanisms by which USFs function as transcriptional activators, different approaches were used to map the domains of USF2 responsible for nuclear localization and transcriptional activation. Two stretches of amino acids, one in the basic region of the DNA binding domain, the other in a highly conserved N-terminal region, were found to direct nuclear localization independently of one another. Two distinct activation domains were also identified. The first one, located in the conserved N-terminal region that overlaps the C-terminal nuclear localization signal, functioned only in the presence of an initiator element in the promoter of the reporter. The second, in a nonconserved region, activated transcription in the absence of an initiator element or when fused to a heterologous DNA binding domain. These results suggest that USF2 functions in different promoter contexts by selectively utilizing different activation domains.^ The deletion analysis of USF2 also identified two dominant negative mutants of USF, one lacking the activation domain, the other lacking the basic domain. The latter proved useful for testing the direct involvement of USFs in the transcriptional activation mediated by the viral protein IE62.^ To investigate the biological function of USFs, foci and colony formation assays were used to study the growth regulation by USFs. It was found that USFs had a strong antagonistic effect on cellular transformation mediated by the bHLH/LZ protein Myc. This effect required the DNA binding activity of either USF 1 or USF2. Moreover, USF2, but not USF1 or other mutants of USFs, was also found to have strong inhibitory effect on the cellular transformation by E1a and on the growth of HeLa cells. These results demonstrate that USFs could potentially regulate growth through two mechanisms, one by antagonizing the function of Myc in cellular transformation, the other by mediating a more general growth inhibitory effect. ^
Resumo:
Post-replication DNA mismatch repair plays crucial roles in mutation avoidance and maintenance of chromosome stability in both prokaryotes and eukaryotes. In humans, deficiency in this repair system leads to a predisposition for certain cancers. The biochemistry of this repair system has been best studied in a model bacterium Escherichia coli. In this thesis, regulation of expression of mutS, mutL and mutH genes, whose products mediate methyl-directed mismatch (MDM) repair in E. coli, is investigated. One-step affinity purification schemes were developed to purify E. coli MutS, MutL and MutH proteins fused to a His-6-affinity tag. His-6-MutS exhibited the same mismatch binding activity and specificity as the native MutS protein. Purified His-6-MutS, -MutL and -MutH proteins were used to develop quantitative Western blotting assays for amounts of MutS, MuL and MutH proteins under various conditions. It was found that the three proteins were present in relatively low amounts in exponentially growing cells and MutS and MutH were diminished in stationary-phase cells. Further studies indicated that the drop in the amounts of MutS and MutH proteins in stationary-phase cells was mediated through RpoS, a key global regulator of stationary-phase transition. In both exponential- and stationary-phase cells, MutS amount was also negatively regulated by the Hfq (HF-I) global regulator, which is required for RpoS translation, through an RpoS-independent mechanism. $\beta$-galactosidase assays of mutS-lacZ operon and gene fusions suggested that hfq regulates mutS posttranscriptionally, and RNase T2 protection assays revealed that Hfq destabilizes mutS transcripts in exponentially growing cells. To study the relation between regulation of MDM repair and mutagenesis, amounts of MutS, MutL and MutH were measured in starved cells undergoing adaptive mutagenesis. It was found that MutS amount dropped drastically, MutH amount dropped slightly, whereas MutL amount remained essentially constant in starved cells. Overexpression of MutL did not reverse the drop in the amounts of MutS or MutH protein. These results ruled out several explanations for a phenomenon in which overexpression of MutL, but not MutS, reversed adaptive mutagenesis. The findings further suggested that functional MutL is limiting during adaptive mutagenesis. The implications of regulation of the MDM repair are discussed in the context of mutagenesis, pathogenesis and tumorigenesis. ^
Resumo:
Retinoic acid regulates cellular growth and differentiation by altering the expression of specific sets of genes, but the molecular mechanism by which this is achieved is unknown. We have used the rapid induction of a specific enzyme, tissue transglutaminase in mouse macrophages, human leukemia cells and a variety of other cell types to study the regulation of gene expression by retinoic acid. Soluble retinoic acid binding proteins, such as cellular Retinoic Acid Binding Protein (cRABP), have been proposed as specific mediators of retinoic acid regulation of gene expression. This thesis demonstrates the lack of cRABP in a number of cell lines which are sensitive to retinoic acid regulation of tissue transglutaminase expression. These cells are also devoid of other soluble retinoic acid binding activity. The level of retinoic acid binding activity that could have been detected (6 fmol) is far below that of most cells and tissues which are sensitive to the effects of retinoic acid on growth and differentiation. A mouse melanoma cell line, S91-C2, was found to contain an unusual retinoic acid binding protein which has a lower affinity for retinoic acid than mouse tissue cRABP and also behaves differently on gel filtration HPLC chromatography.^ The induction of tissue transglutaminase by retinoic acid in macrophages is specifically inhibited by pertussis toxin. Pertussis toxin ADP-riblosylates membrane GTP-binding proteins such as N(,i) and interferes with signalling from plasma membrane receptors to regulatory enzymes. Pertussis toxin inhibition of transglutaminase induction is due to inhibition of tissue transglutaminase mRNA accumulation and is paralleled by the ADP-ribosylation of a 41,000 dalton macrophage membrane protein. It is concluded that soluble retinoic acid binding proteins are not essential for retinoic acid induction of tissue transglutaminase and that a membrane GTP-binding protein is closely linked to the sensitive response of macrophages to retinoic acid. ^