897 resultados para chilling tolerance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cold-water subtidal brown alga Laminaria japonica has been commercially fanned in the Far East and has been on top of all marine-fanned species in terms of farming area and annual output worldwide. The successful trials of transplantation of young sporophytes from the north to the south in winter along the Chinese coast in the 1950s led to the spreading of cultivation activities down to a latitude of 25-26 degrees N. Up to today, nearly 50% of the annual output of this farmed alga, as a cold-water species, comes from the sub-tropical south in China. The demand to have high-temperature-tolerant strains/ecotypes in farming area calls for a practical method to judge and select the desired parental plants for breeding programs and for seedling production. In this paper, we report our results on using chlorophyll fluorescence measurement and short-term growth performance in tank culture to estimate the temperature tolerance of offspring from two populations, Fujian Farmed Population (FFP) sampled from Fujian province (latitude: 25-26 degrees N) in subtropical area and Qingdao Wild Population (QWP) sampled from Qingdao (latitude: 36 degrees N). Contrary to what has been usually thought, the results revealed that offspring from Qingdao wild population in the north showed better performance both in short-term growth and survival rates and in optimal quantum efficiency (F-v/F-m) when exposed to higher temperature (20-25 degrees C). This result was further confirmed by fluorescence quenching analysis. QWP distributed along the southern distribution limit at a latitude of 36 degrees N in the Pacific west coast is thus taken as a more ideal one than the fanned population in subtropical region as a source of parental plants for breeding high-temperature-tolerant varieties. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO. which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading. the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H-2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ian M. Scott, Shannon M. Clarke, Jacqueline E. Wood and Luis A.J. Mur (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135(2), 1040-1049. RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cronobacter spp. are opportunistic pathogens which can be isolated from a wide variety of foods and environments. They are Gram negative, motile, non-spore forming, peritrichous rods of the Enterobacteriaceae family. This food-borne pathogen is associated with the ingestion of contaminated infant milk formula (IMF), causing necrotizing enterocolitis, sepsis and meningitis in neonatal infants. The work presented in this thesis involved the investigation and characterisation of a bank of Cronobacter strains for their ability to tolerate physiologically relevant stress conditions that are commonly encountered in the gastrointestinal tract. While all strains were able to endure the suboptimal conditions tested, noteworthy variations were observed between strains. A collection of these strains were Lux-tagged to determine if their growth could be tracked in IMF by measuring bioluminescence. The resulting strains could be easily and reproducibly monitored in real time by measuring light emission. Following this a transposon mutagenesis library was created in one of the Lux-tagged strains of Cronobacter sakazakii. This library was screened for mutants with affected growth in milk. The majority of mutants identified were associated with amino acid metabolism. The final section of this thesis identified genes involved in the tolerance of C. sakazakii to the milk derived antimicrobial peptide, Lactoferricin B (Lfcin B). This was achieved by creating a transposon mutagenesis library in C. sakazakii and screening for mutants with increased susceptibility to Lfcin B. Overall this thesis demonstrates the variation between Cronobacter strains. It also identifies genes required for growth of the bacteria in milk, as well as genes needed for antimicrobial peptide tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of Lactococcus lactis subsp. cremoris NCDO 712 to low water activity (aw) was investigated, both in relation to growth following moderate reductions in the aw and in terms of survival following substantial reduction of the aw with NaCI. Lc.lactis NCDO 712 was capable of growth in the presence of ≤ 4% w/v NaCI and concentrations in excess of 4% w/v were lethal to the cells. The presence of magnesium ions significantly increased the resistance of NCDO 712 to challenge with NaCI and also to challenge with high temperature or low pH. Survival of Lc.lactis NCDO 712 exposed to high NaCI concentrations was growth phase dependent and cells were most sensitive in the early exponential phase of growth. Pre-exposure to 3% w/v NaCI induced limited protection against subsequent challenge with higher NaCI concentrations. The induction was inhibited by chloramphenicol and even when induced, the response did not protect against NaCI concentrations> 10% w/v. When growing at low aw, potassium was accumulated by Lc. lactis NCDO 712 growing at low aw, if the aw was reduced by glucose or fructose, but not by NaCI. Reducing the potassium concentration of chemically defined medium from 20 to 0.5 mM) produced a substantial reduction in the growth rate, if the aw was reduced with NaCI, but not with glucose or fructose. The reduction of the growth rate correlated strongly with a reduction in the cytoplasmic potassium concentration and in cell volume. Addition of the compatible solute glycine betaine, partially reversed the inhibition of growth rate and partially restored the cell volume. The potassium transport system was characterised in cells grown in medium at both high and low aw. It appeared that a single system was present, which was induced approximately two-fold by growth at low aw. Potassium transport was assayed in vitro using cells depleted of potassium; the assay was competitively inhibited by Na+ and by the other monovalent cations NH4+, Li+, and Cs+. There was a strong correlation between the ability of strains of Lc. lactis subsp. lactis and subsp. cremoris to grow at low aw and their ability to accumulate the compatible solute glycine betaine. The Lc. lactis subsp. cremoris strains incapable of growth at NaCI concentrations> 2% w/v did not accumulate glycine betaine when growing at low aw, whereas strains capable of growth at NaCI concentrations up to 4% w/v did. A mutant, extremely sensitive to low aw was isolated from the parent strain Lc. lactis subsp. cremoris MG 1363, a plasmid free derivative of NCDO 712. The parent strain tolerated up to 4% w/v NaCI and actively accumulated glycine betaine when challenged at low aw. The mutant had lost the ability to accumulate glycine betaine and was incapable of growth at NaCI concentrations >2% w/v or the equivalent concentration of glucose. As no other compatible solute seemed capable of substitution for glycine betaine, the data suggest that the traditional; phenotypic speciation of strains on the basis of tolerance to 4% w/v NaCI can be explained as possession or lack of a glycine betaine transport system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphine induces antinociception by activating mu opioid receptors (muORs) in spinal and supraspinal regions of the CNS. (Beta)arrestin-2 (beta)arr2), a G-protein-coupled receptor-regulating protein, regulates the muOR in vivo. We have shown previously that mice lacking (beta)arr2 experience enhanced morphine-induced analgesia and do not become tolerant to morphine as determined in the hot-plate test, a paradigm that primarily assesses supraspinal pain responsiveness. To determine the general applicability of the (beta)arr2-muOR interaction in other neuronal systems, we have, in the present study, tested (beta)arr2 knock-out ((beta)arr2-KO) mice using the warm water tail-immersion paradigm, which primarily assesses spinal reflexes to painful thermal stimuli. In this test, the (beta)arr2-KO mice have greater basal nociceptive thresholds and markedly enhanced sensitivity to morphine. Interestingly, however, after a delayed onset, they do ultimately develop morphine tolerance, although to a lesser degree than the wild-type (WT) controls. In the (beta)arr2-KO but not WT mice, morphine tolerance can be completely reversed with a low dose of the classical protein kinase C (PKC) inhibitor chelerythrine. These findings provide in vivo evidence that the muOR is differentially regulated in diverse regions of the CNS. Furthermore, although (beta)arr2 appears to be the most prominent and proximal determinant of muOR desensitization and morphine tolerance, in the absence of this mechanism, the contributions of a PKC-dependent regulatory system become readily apparent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Release of endogenous dynorphin opioids within the spinal cord after partial sciatic nerve ligation (pSNL) is known to contribute to the neuropathic pain processes. Using a phosphoselective antibody [kappa opioid receptor (KOR-P)] able to detect the serine 369 phosphorylated form of the KOR, we determined possible sites of dynorphin action within the spinal cord after pSNL. KOR-P immunoreactivity (IR) was markedly increased in the L4-L5 spinal dorsal horn of wild-type C57BL/6 mice (7-21 d) after lesion, but not in mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). In addition, knock-out mice lacking prodynorphin, KOR, or G-protein receptor kinase 3 (GRK3) did not show significant increases in KOR-P IR after pSNL. KOR-P IR was colocalized in both GABAergic neurons and GFAP-positive astrocytes in both ipsilateral and contralateral spinal dorsal horn. Consistent with sustained opioid release, KOR knock-out mice developed significantly increased tactile allodynia and thermal hyperalgesia in both the early (first week) and late (third week) interval after lesion. Similarly, mice pretreated with norBNI showed enhanced hyperalgesia and allodynia during the 3 weeks after pSNL. Because sustained activation of opioid receptors might induce tolerance, we measured the antinociceptive effect of the kappa agonist U50,488 using radiant heat applied to the ipsilateral hindpaw, and we found that agonist potency was significantly decreased 7 d after pSNL. In contrast, neither prodynorphin nor GRK3 knock-out mice showed U50,488 tolerance after pSNL. These findings suggest that pSNL induced a sustained release of endogenous prodynorphin-derived opioid peptides that activated an anti-nociceptive KOR system in mouse spinal cord. Thus, endogenous dynorphin had both pronociceptive and antinociceptive actions after nerve injury and induced GRK3-mediated opioid tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding immune tolerance mechanisms is a major goal of immunology research, but mechanistic studies have generally required the use of mouse models carrying untargeted or targeted antigen receptor transgenes, which distort lymphocyte development and therefore preclude analysis of a truly normal immune system. Here we demonstrate an advance in in vivo analysis of immune tolerance that overcomes these shortcomings. We show that custom superantigens generated by single chain antibody technology permit the study of tolerance in a normal, polyclonal immune system. In the present study we generated a membrane-tethered anti-Igkappa-reactive single chain antibody chimeric gene and expressed it as a transgene in mice. B cell tolerance was directly characterized in the transgenic mice and in radiation bone marrow chimeras in which ligand-bearing mice served as recipients of nontransgenic cells. We find that the ubiquitously expressed, Igkappa-reactive ligand induces efficient B cell tolerance primarily or exclusively by receptor editing. We also demonstrate the unique advantages of our model in the genetic and cellular analysis of immune tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opioids are efficacious and cost-effective analgesics, but tolerance limits their effectiveness. This paper does not present any new clinical or experimental data but demonstrates that there exist ascending sensory pathways that contain few opioid receptors. These pathways are located by brain PET scans and spinal cord autoradiography. These nonopioid ascending pathways include portions of the ventral spinal thalamic tract originating in Rexed layers VI-VIII, thalamocortical fibers that project to the primary somatosensory cortex (S1), and possibly a midline dorsal column visceral pathway. One hypothesis is that opioid tolerance and opioid-induced hyperalgesia may be caused by homeostatic upregulation during opioid exposure of nonopioid-dependent ascending pain pathways. Upregulation of sensory pathways is not a new concept and has been demonstrated in individuals impaired with deafness or blindness. A second hypothesis is that adjuvant nonopioid therapies may inhibit ascending nonopioid-dependent pathways and support the clinical observations that monotherapy with opioids usually fails. The uniqueness of opioid tolerance compared to tolerance associated with other central nervous system medications and lack of tolerance from excess hormone production is discussed. Experimental work that could prove or disprove the concepts as well as flaws in the concepts is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clear assessment deadlines and severe penalties for late submission of coursework are a feature of a number of UK universities. This presents a severe challenge for any online upload system. Evidence from a range of different implementations at the School of Computing and Mathematical Sciences at the University of Greenwich over the past few years is examined to assess the impact of a zero-tolerance deadline policy on the way students work and the problems that arise. Suggestions are made on how to minimise any possible negative impact of a zero-tolerance deadline policy on the administration of the system and on staff and students.