971 resultados para charged particle dynamics
Resumo:
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.
Resumo:
L’objectif de ce mémoire de maîtrise est de caractériser la distribution axiale des plasmas tubulaires à la pression atmosphérique créés et entretenus par une onde électromagnétique de surface ainsi que d’explorer le potentiel de ces sources pour la synthèse de matériaux et de nanomatériaux. Un précédent travail de thèse, qui avait pour objectif de déterminer les mécanismes à l’origine de la contraction radiale du plasma créé dans des gaz rares, a mis en lumière un phénomène jusque-là inconnu dans les plasmas d’onde de surface (POS). En effet, la distribution axiale varie différemment selon la puissance incidente ce qui constitue une différence majeure par rapport aux plasmas à pression réduite. Dans ce contexte, nous avons réalisé une étude paramétrique des POS à la pression atmosphérique dans l’Ar. À partir de nos mesures de densité électronique, de température d’excitation et de densité d’atomes d’Ar dans un niveau métastable (Ar 3P2), résolues axialement, nous avons conclu que le comportement axial de l’intensité lumineuse avec la puissance n’est pas lié à un changement de la cinétique de la décharge (qui est dépendante de la température des électrons et de la densité d’atomes d’Ar métastables), mais plutôt à une distribution anormale de dissipation de puissance dans le plasma (reliée à la densité d’électrons). Plus précisément, nos résultats suggèrent que ce dépôt anormal de puissance provient d’une réflexion de l’onde dans le fort gradient de densité de charges en fin de colonne, un effet plus marqué pour de faibles longueurs de colonnes à plasma. Ensuite, nous avons effectué une étude spectroscopique du plasma en présence de précurseurs organiques, en particulier le HMDSO pour la synthèse de matériaux organosiliciés et l’IPT pour la synthèse de matériaux organotitaniques. Les POS à la PA sont caractérisés par des densités de charges très élevées (>10^13 cm^-3), permettant ainsi d’atteindre des degrés de dissociation des précurseurs nettement plus élevés que ceux d'autres plasmas froids à la pression atmosphérique comme les décharges à barrière diélectrique. Dans de tels cas, les matériaux synthétisés prennent la forme de nanopoudres organiques de taille inférieure à 100 nm. En présence de faibles quantités d’oxygène dans le plasma, nous obtenons plutôt des nanopoudres à base d’oxyde de silicium (HMDSO) ou à base de titanate de silicium (IPT), avec très peu de carbone.
Resumo:
A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.
Resumo:
We revisit the non-dissipative time-dependent annular billiard and we consider the chaotic dynamics in two planes of conjugate variables in order to describe the behavior of the growth, or saturation, of the mean velocity of an ensemble of particles. We observed that the changes in the 4-d phase space occur without changing any parameter. They occur depending on where the initial conditions start. The emerging KAM islands interfere in the behavior of the particle dynamics especially in the Fermi acceleration mechanism. We show that Fermi acceleration can be suppressed, without dissipation, even considering the non-dissipative energy context. (C) 2011 Published by Elsevier Ltd.
Resumo:
We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
Resumo:
Faddeev-type equations are applied to three-charged particle systems. The rather satisfactory results are obtained for low energy e(+)H elastic scattering and muonic transfer reactions. The cross sections for antihydrogen formation from antiproton-positronium collisions are calculated using a six state model (Ps[1s2s2p], (H) over bar[1s2s2p]).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
A measurement of the underlying activity in scattering processes with pT scale in the GeV region is performed in proton-proton collisions at √ = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged particle production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged particles with pseudorapidity {pipe}η{pipe} < 2, pT > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object. © 2010 CERN for benefit of the CMS collaboration.