978 resultados para cellulose nanofibrils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid hydrolysis of cellulose with crystalline and amorphous fractions is analyzed on the basis of autocatalytic model with a positive feedback of acid production from the degraded biopolymer. In the condition of low acid rate production compared with hydrolysis rate, both fraction of cellulose decrease exponentially with linear and cubic time dependence, and the normalized number of scissions per cellulose chain follows a sigmoid behavior with reaction time. The model predicts that self generated acidic compounds from cellulose accelerate the degradation of the biopolymer. However, if the acidic compounds produced are volatile species, then their release under low pressure will reduce the global rate of degradation of cellulose toward its intrinsic rate value determined by the residual acid catalyst present in the starting material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pineapple leaf fiber (PALF) which is rich in cellulose, abundantly available, relatively inexpensive, low density, nonabrasive nature, high filling level possible, low energy consumption, high specific properties, biodegradability and has the potential for polymer reinforcement. The utilization of pineapple leaf fiber (PALF) as reinforcements in thermoplastic and thermosetting resins in micro and nano form for developing low cost and lightweight composites is an emerging field of research in polymer science and technology. In this paper we examines the industrial applicabiliy of PALF, mainly for production of composite materials and special papers, chemical feedstocks (bromelin enzyme) and fabrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depolymerization of cellulose in homogeneous acidic medium is analyzed on the basis of autocatalytic model of hydrolysis with a positive feedback of acid production from the degraded biopolymer. The normalized number of scissions per cellulose chain, S(t)/nA degrees A = 1 - C(t)/C(0), follows a sigmoid behavior with reaction time t, and the cellulose concentration C(t) decreases exponentially with a linear and cubic time dependence, C(t) = C(0)exp[-at - bt (3)], where a and b are model parameters easier determined from data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, cellulose nanofibers were obtained from wood pulp using a chemo-mechanical method and thin films were made of these cellulose nanofibers. The morphology of the films was studied by scanning electron microscopy (SEM). SEM image analysis revealed that the films were composed of cellulose nanofibers with an average diameter of around 32 nm. Other properties were also characterized, including the degree of crystallinity by X-ray diffraction, chemical bonding by infrared attenuated total reflectance analysis, and thermal properties by differential scanning calorimetry. The foldable, strong, and optically translucent cellulose nanofiber films thus obtained have many potential applications as micro/nano electronic devices, biosensors and filtration media, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose, the main component of plant cell walls, is insoluble and difficult to digest enzymatically. This research discovered that herbivorous land crabs have an efficient gastric mill in the stomach which disrupts this insoluble material, and a range of highly specialised enzymes that can then break down the cellulose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four different cellulose nanofibers samples were prepared from northern bleached softwood kraft fibers. Fiber diameter distributions were measured from SEM images. Fiber aspect ratios ranging from 84 to 146 were estimated from fiber suspension sedimentation measurements. Three samples had heterogeneous distributions of fiber diameters, while one sample was more homogeneous. Sheet forming experiments using filters with pores ranging from 150 to 5 μm showed that the samples with a heterogeneous distribution of fiber dimensions could be easily formed into sheets at 0. 2% initial solids concentration with all filter openings. On the other hand, sheets could only be formed from the homogenous sample by using 0. 5% or more initial solids content and a lower applied vacuum and smaller filter openings. The forming data and estimated aspect ratios show reasonable agreement with the predictions of the crowding number and percolation theories for the connectivity and rigidity thresholds for fiber suspensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of fabricating carbon nanofibers from cellulose nanofibers was investigated. Cellulose nanofiber of ~50 nm in diameter was produced using ball milling in an eco-friendly manner. The effect of the drying techniques of cellulose nanofibers on the morphology of carbon residue was studied. After pyrolysis of freeze-dried cellulose nanofibers below 600 °C, amorphous carbon fibers of ~20 nm in diameter were obtained. The pyrolysis of oven-dried precursors resulted in the loss of original fibrous structures. The different results arising from the two drying techniques are attributed to the difference in the spatial distance between cellulose nanofiber precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid TiO2/microcrystalline cellulose (MC) nanophotocatalyst was prepared in situ by a facile and simple synthesis utilizing benign precursors such as MC and TiCl4. The as-prepared nanocomposite was characterized by XRD, XPS, BET surface area analyzer, UV–vis DRS and TGA. Surface morphology was assessed by the means of SEM and HR-TEM. Statistics-based factorial design (FD) was adopted to investigate the effect of precursors concentrations and therefore to optimize the nanocomposite synthesis through catalytic adsorption of methylene blue (MB) from aqueous solutions. The results indicated that TiO2/MC nanocomposites were photocatalytically active in diminishing 40–90% of MB in 4 h.