954 resultados para boundary condition
Resumo:
A finite element model is developed to predict the stress-strain behaviour of particulate composites with fully unbonded filler particles. This condition can occur because of the lack of adhesion property of the filler surface. Whilst part of the filler particle is separated from the matrix, another section of filler keeps in contact with the matrix because of the lateral compressive displacement of the matrix. The slip boundary condition is imposed on the section of the interface that remains closed. The states of stress and displacement fields are obtained. The location of any further deformation through crazing or shear band formation is identified. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the interface significantly. Whereas this might lead to slightly higher strength, it decreases the load transfer efficiency and stiffness of this type of composite.
Resumo:
This paper outlines the importance of robust interface management for facilitating finite element analysis workflows. Topological equivalences between analysis model representations are identified and maintained in an editable and accessible manner. The model and its interfaces are automatically represented using an analysis-specific cellular decomposition of the design space. Rework of boundary conditions following changes to the design geometry or the analysis idealization can be minimized by tracking interface dependencies. Utilizing this information with the Simulation Intent specified by an analyst, automated decisions can be made to process the interface information required to rebuild analysis models. Through this work automated boundary condition application is realized within multi-component, multi-resolution and multi-fidelity analysis workflows.
Resumo:
This study aimed to carry out experimental work to determine, for Newtonian and non-Newtonian fluids, the friction factor (fc) with simultaneous heat transfer, at constant wall temperature as boundary condition, in fully developed laminar flow inside a vertical helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w). The non-Newtonian fluids were aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations of 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations of 0.1% and 0.2% (w/w). According to the rheological study done, the polymer solutions had shear-thinning behavior and different values of viscoelasticity. The helical coil used has an internal diameter, curvature ratio, length and pitch, respectively: 0.00483 m, 0.0263, 5.0 m and 11.34 mm. It was concluded that the friction factors, with simultaneous heat transfer, for Newtonian fluids can be calculated using expressions from literature for isothermal flows. The friction factors for CMC and XG solutions are similar to those for Newtonian fluids when the Dean number, based in a generalized Reynolds number, is less than 80. For Dean numbers higher than 80, the friction factors of the CMC solutions are lower those of the XG solutions and of the Newtonian fluids. In this range the friction factors decrease with the increase of the viscometric component of the solution and increase for increasing elastic component. The change of behavior at Dean number 80, for Newtonian and non-Newtonian fluids, is in accordance with the study of Ali [4]. There is a change of behavior at Dean number 80, for Newtonian and non-Newtonian fluids, which is in according to previous studies. The data also showed that the use of the bulk temperature or of the film temperature to calculate the physical properties of the fluid has a residual effect in the friction factor values.
Resumo:
This study aimed to carry out experimental work to obtain, for Newtonian and non-Newtonian fluids, heat transfer coefficients, at constant wall temperature as boundary condition, in fully developed laminar flow inside a helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations 0.1%, 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations 0.1% and 0.2% (w/w). According to the rheological study performed, the polymer solutions had shear thinning behavior and different values of elasticity. The helical coil used has internal diameter, curvature ratio, length and pitch, respectively: 0.004575 m, 0.0263, 5.0 m and 11.34 mm. The Nusselt numbers for the CMC solutions are, on average, slightly higher than those for Newtonian fluids, for identical Prandtl and generalized Dean numbers. As outcome, the viscous component of the shear thinning polymer tends to potentiate the mixing effect of the Dean cells. The Nusselt numbers of the XG solutions are significant lower than those of the Newtonian solutions, for identical Prandtl and generalized Dean numbers. Therefore, the elastic component of the polymer tends to diminish the mixing effect of the Dean cells. A global correlation, for Nusselt number as a function of Péclet, generalized Dean and Weissenberg numbers for all Newtonian and non-Newtonian solutions studied, is presented.
Resumo:
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
Resumo:
Calculations are performed on the \S <:Jd ground states of
d ' +
the H and HC) molecules using a basis set of non-integral
~ ~ I
elliptical orbitals. Different variational wavefunctions constructed
i- for H~ involved one parameter to three par~~eter variation.
In order to l"'educe the ntunber of parameters in most commonly
0-
used basis orbitals set, the importance of the term (,+~)
Y\ over the term ;u 'Where n is a variational pararneter and the value
of cr may be given by boundary condition or cusp condition is
outlined in Chapters II and III. It is found that the two parameter
-+
Resumo:
Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7.
Resumo:
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.
Resumo:
Hat Stiffened Plates are used in composite ships and are gaining popularity in metallic ship construction due to its high strength-to-weight ratio. Light weight structures will result in greater payload, higher speeds, reduced fuel consumption and environmental emissions. Numerical Investigations have been carried out using the commercial Finite Element software ANSYS 12 to substantiate the high strength-to-weight ratio of Hat Stiffened Plates over other open section stiffeners which are commonly used in ship building. Analysis of stiffened plate has always been a matter of concern for the structural engineers since it has been rather difficult to quantify the actual load sharing between stiffeners and plating. Finite Element Method has been accepted as an efficient tool for the analysis of stiffened plated structure. Best results using the Finite Element Method for the analysis of thin plated structures are obtained when both the stiffeners and the plate are modeled using thin plate elements having six degrees of freedom per node. However, one serious problem encountered with this design and analysis process is that the generation of the finite element models for a complex configuration is time consuming and laborious. In order to overcome these difficulties two different methods viz., Orthotropic Plate Model and Superelement for Hat Stiffened Plate have been suggested in the present work. In the Orthotropic Plate Model geometric orthotropy is converted to material orthotropy i.e., the stiffeners are smeared and they vanish from the field of analysis and the structure can be analysed using any commercial Finite Element software which has orthotropic elements in its element library. The Orthotropic Plate Model developed has predicted deflection, stress and linear buckling load with sufficiently good accuracy in the case of all four edges simply supported boundary condition. Whereas, in the case of two edges fixed and other two edges simply supported boundary condition even though the stress has been predicted with good accuracy there has been large variation in the deflection predicted. This variation in the deflection predicted is because, for the Orthotropic Plate Model the rigidity is uniform throughout the plate whereas in the actual Hat Stiffened Plate the rigidity along the line of attachment of the stiffeners to the plate is large as compared to the unsupported portion of the plate. The Superelement technique is a method of treating a portion of the structure as if it were a single element even though it is made up of many individual elements. The Superelement has predicted the deflection and in-plane stress of Hat Stiffened Plate with sufficiently good accuracy for different boundary conditions. Formulation of Superelement for composite Hat Stiffened Plate has also been presented in the thesis. The capability of Orthotropic Plate Model and Superelement to handle typical boundary conditions and characteristic loads in a ship structure has been demonstrated through numerical investigations.
Resumo:
In dieser Arbeit werden zwei Aspekte bei Randwertproblemen der linearen Elastizitätstheorie untersucht: die Approximation von Lösungen auf unbeschränkten Gebieten und die Änderung von Symmetrieklassen unter speziellen Transformationen. Ausgangspunkt der Dissertation ist das von Specovius-Neugebauer und Nazarov in "Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type"(Math. Meth. Appl. Sci, 2004; 27) eingeführte Verfahren zur Untersuchung von Petrovsky-Systemen zweiter Ordnung in Außenraumgebieten und Gebieten mit konischen Ausgängen mit Hilfe der Methode der künstlichen Randbedingungen. Dabei werden für die Ermittlung von Lösungen der Randwertprobleme die unbeschränkten Gebiete durch das Abschneiden mit einer Kugel beschränkt, und es wird eine künstliche Randbedingung konstruiert, um die Lösung des Problems möglichst gut zu approximieren. Das Verfahren wird dahingehend verändert, dass das abschneidende Gebiet ein Polyeder ist, da es für die Lösung des Approximationsproblems mit üblichen Finite-Element-Diskretisierungen von Vorteil sei, wenn das zu triangulierende Gebiet einen polygonalen Rand besitzt. Zu Beginn der Arbeit werden die wichtigsten funktionalanalytischen Begriffe und Ergebnisse der Theorie elliptischer Differentialoperatoren vorgestellt. Danach folgt der Hauptteil der Arbeit, der sich in drei Bereiche untergliedert. Als erstes wird für abschneidende Polyedergebiete eine formale Konstruktion der künstlichen Randbedingungen angegeben. Danach folgt der Nachweis der Existenz und Eindeutigkeit der Lösung des approximativen Randwertproblems auf dem abgeschnittenen Gebiet und im Anschluss wird eine Abschätzung für den resultierenden Abschneidefehler geliefert. An die theoretischen Ausführungen schließt sich die Betrachtung von Anwendungsbereiche an. Hier werden ebene Rissprobleme und Polarisationsmatrizen dreidimensionaler Außenraumprobleme der Elastizitätstheorie erläutert. Der letzte Abschnitt behandelt den zweiten Aspekt der Arbeit, den Bereich der Algebraischen Äquivalenzen. Hier geht es um die Transformation von Symmetrieklassen, um die Kenntnis der Fundamentallösung der Elastizitätsprobleme für transversalisotrope Medien auch für Medien zu nutzen, die nicht von transversalisotroper Struktur sind. Eine allgemeine Darstellung aller Klassen konnte hier nicht geliefert werden. Als Beispiel für das Vorgehen wird eine Klasse von orthotropen Medien im dreidimensionalen Fall angegeben, die sich auf den Fall der Transversalisotropie reduzieren lässt.
Resumo:
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).
Resumo:
In recent years there has been a rapid growth of interest in exploring the relationship between nutritional therapies and the maintenance of cognitive function in adulthood. Emerging evidence reveals an increasingly complex picture with respect to the benefits of various food constituents on learning, memory and psychomotor function in adults. However, to date, there has been little consensus in human studies on the range of cognitive domains to be tested or the particular tests to be employed. To illustrate the potential difficulties that this poses, we conducted a systematic review of existing human adult randomised controlled trial (RCT) studies that have investigated the effects of 24 d to 36 months of supplementation with flavonoids and micronutrients on cognitive performance. There were thirty-nine studies employing a total of 121 different cognitive tasks that met the criteria for inclusion. Results showed that less than half of these studies reported positive effects of treatment, with some important cognitive domains either under-represented or not explored at all. Although there was some evidence of sensitivity to nutritional supplementation in a number of domains (for example, executive function, spatial working memory), interpretation is currently difficult given the prevailing 'scattergun approach' for selecting cognitive tests. Specifically, the practice means that it is often difficult to distinguish between a boundary condition for a particular nutrient and a lack of task sensitivity. We argue that for significant future progress to be made, researchers need to pay much closer attention to existing human RCT and animal data, as well as to more basic issues surrounding task sensitivity, statistical power and type I error.
Resumo:
We study the asymptotic behaviour of the principal eigenvalue of a Robin (or generalised Neumann) problem with a large parameter in the boundary condition for the Laplacian in a piecewise smooth domain. We show that the leading asymptotic term depends only on the singularities of the boundary of the domain, and give either explicit expressions or two-sided estimates for this term in a variety of situations.