212 resultados para blastocyst
Resumo:
Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^
Resumo:
Extracellular matrix (ECM) is a component of a variety of organisms that provides both structural support and influence upon the cells it surrounds. The importance of the ECM is becoming more apparent as matrix defects are linked to human disease. In this study, the large, extracellular matrix heparan sulfate proteoglycan, perlecan (Pln) is examined in two systems. First, the role of Pln in the interaction between a blastocyst and uterine epithelial cells is investigated. In mice, blastocyst attachment and implantation occurs at approximately d 4.5 post coitus. In addition, a delayed implantation model has been used to distinguish between the response of the blastocyst to that of hatching and of becoming attachment competent. ^ The second series of experiments described in this study focuses on the process of chondrogenesis in mice. Pln, commonly expressed with other basement membrane (BM) proteins, was found to be expressed in cartilaginous tissue without other BM proteins. This unusual expression pattern led to further study and the development of an in vitro chondrogenesis assay using the mouse embryonic fibroblast cell line, C3H/10T1/2. When cultured on Pln in vitro, these cells form aggregates and express the cartilage proteins, collagen type II and aggrecan. In examining the participation of the heparan sulfate (HS) chains in this process, the proteoglycan was enzymatically digested to remove the HS chains before the initiation of 10T1/2 cell culture. After digestion, the ability of Pln to stimulate aggregate formation was greatly diminished. Thus, the HS chains participate in the cell induction process. To determine which domain of Pln might be responsible for this activity, recombinant fragments of Pin were used in the cell culture assay. Of all recombinant protein fragments tested, only the domain including the HS chains, domain 1, was able to initiate the morphological change exhibited by the 10T1/2 cells. Similar to native Pln, when HS chains were removed from domain I, chondrogenic activity was abolished. A variant of domain I carrying both HS and chondroitin sulfate (CS) chains retained activity when only HS chains were removed. When both HS and CS chains were removed, then activity was lost. ^ The ability to rapidly stimulate differentiation of 10T1/2 cells in vitro may lead to better control of chondrogenesis in vitro and in vivo, providing better understanding and manipulation of the chondrogenic process. This greater understanding may have benefits for study of cartilage and bone diseases and subsequent treatment options. (Abstract shortened by UMI.)^
Resumo:
In vitro culture for bovine embryos is largely not optimal. Our study was to determine the components necessary for early embryo development. In experiment 1, IVF embryos were cultured for two days in CR1aa medium containing sodium citrate and BSA from two sources (Sigma vs. ICPbio), subsequently for additional five days with cumulus monolayer in 10% FBS CR1aa. We found that supplementation with both Sigma-BSA and sodium citrate significantly increased total blastocyst (BL) development compared with the ICPbio-BSA groups (37% vs. 19-21%), and enhanced the total number of high quality (C1 BL, IETS standard) blastocysts (26% vs. 11-17%) (P < 0.05). In experiment 2 with serum free and/or somatic free culture, we found that CR1aa culture can support a comparable embryo development with a supplement of Sigma BSA. The addition of sodium citrate did not increase blastocyst development in either the Sigma-BSA or the ICPbio-BSA groups. An inferior blastocyst development occurring in ICPbio-BSA culture (1-3%) could be rescued by culture in CRlaa supplemented with 10% FBS (29%), more importantly, by culture in CR1aa with a replacement of Sigma BSA (24%) (P <0.05). C1 blastocysts rescued by FBS and Sigma BSA in ICPbio-BSA culture possessed indistinguishable morphology to embryos developed in a Sigma-BSA, FBS and somatic co-culture system, showing similar cell number/blastocyst (129-180, P > 0.05). Our study found a beneficial effect of sodium citrate and BSA on the in vitro development of bovine IVF embryos during co-culture. We also determined that differential embryotrophic factor(s) contained in BSA and serum, probably not sodium citrate, is necessary for promoting competent morula and blastocyst development in cattle.
Resumo:
Effective activation of a recipient oocyte and its compatibility with the nuclear donor are critical to the successful nuclear reprogramming during nuclear transfer. We designed a series of experiments using various activation methods to determine the optimum activation efficiency of bovine oocytes. We then performed nuclear transfer (NT) of embryonic and somatic cells into cytoplasts presumably at G1/S phase (with prior activation) or at metaphase II (MII, without prior activation). Oocytes at 24 hr of maturation in vitro were activated with various combinations of calcium ionophore A23187 (A187) (5 microM, 5 min), electric pulse (EP), ethanol (7%, 7 min), cycloheximide (CHX) (10 micro g/ml, 6 hr), and then cultured in cytochalasin D (CD) for a total of 18 hr. Through a series of experiments (Exp. 1-4), an improved activation protocol (A187/EP/CHX/CD) was identified and used for comparison of NT efficiency of embryonic versus somatic donor cells (Exp. 5). When embryonic cells from morula and blastocysts (BL) were used as nuclear donors, a significantly higher rate of blastocyst development from cloned embryos was obtained with G1/S phase cytoplasts than with MII-phase cytoplasts (36 vs. 11%, P < 0.05). In contrast, when skin fibroblasts were used as donor cells, the use of an MII cytoplast (vs. G1/S phase) was imperative for blastocyst development (30 vs. 6%, P < 0.05). Differential staining showed that parthenogenetic, embryonic, and somatic cloned BL contained 26, 29, and 33% presumptive inner cell mass (ICM) cells, respectively, which is similar to that of frozen-thawed in vivo embryos at a comparable developmental stage (23%). These data indicate that embryonic and somatic nuclei require different recipient cytoplast environment for remodeling/ reprogramming, and this is likely due to the different cell cycle stage and profiles of molecular differentiation of the transferred donor nuclei.
Resumo:
Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^
Resumo:
To study RAG2 gene regulation in vivo, we developed a blastocyst complementation method in which RAG2-deficient embryonic stem cells were transfected with genomic clones containing RAG2 and then assessed for their ability to generate lymphocytes. A RAG2 genomic clone that contained only the RAG2 promoter sequences rescued V(D)J recombination in RAG2-deficient pro-B cell lines, but did not rescue development of RAG2-deficient lymphocytes in vivo. However, inclusion of varying lengths of sequences 5′ of the RAG2 promoter generated constructs capable of rescuing only in vivo B cell development, as well as other constructs that rescued both B and T cell development. In particular, the 2-kb 5′ region starting just upstream of the RAG2 promoter, as well as the region from 2–7 kb 5′, could independently drive B cell development, but not efficient T cell development. Deletion of the 2-kb 5′ region from the murine germ line demonstrated that this region was not required for RAG expression sufficient to generate normal B or T cell numbers, implying redundancy among 5′ elements. We conclude that RAG2 expression in vivo requires elements beyond the core promoter, that such elements contribute to differential regulation in the B vs. T lineages, and that sequences sufficient to direct B cell expression are located in the promoter-proximal 5′ region.
Resumo:
Mouse clones were produced by serial nuclear transfer commencing with the transfer of four-cell nuclei at metaphase into unfertilized ooplasts. The donor four-cell-stage nuclei were synchronized in metaphase with nocodazole. The oocytes receiving a four-cell nucleus at metaphase formed two nuclei after artificial activation and inhibition of cytokinesis with cytochalasin B. To obtain embryos with diploid sets of chromosomes, nuclei from each reconstructed embryo were transferred individually into separate enucleated fertilized one-cell embryos, thus doubling the number of identical embryos. This procedure produced a high frequency of development of reconstructed embryos to the blastocyst stage. Of 11 sets of identical embryos produced by serial nuclear transplantation, 83% developed into blastocysts, including three sets of identical septuplet blastocysts. After transfer to recipient mice, a total of 25 (57%) live young were obtained, which included one set of identical sextuplet and two sets of identical quadruplet mice.
Resumo:
The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages. In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose–response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40–50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GH. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription–PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.
Resumo:
Cloning allows the asexual reproduction of selected individuals such that the offspring have an essentially identical nuclear genome. Cloning by nuclear transfer thus far has been reported only with freshly isolated cells and cells from primary cultures. We previously reported a method of cloning mice from adult somatic cells after nuclear transfer by microinjection. Here, we apply this method to clone mice from widely available, established embryonic stem (ES) cell lines at late passage. With the ES cell line R1, 29% of reconstructed oocytes developed in vitro to the morula/blastocyst stage, and 8% of these embryos developed to live-born pups when transferred to surrogate mothers. We thus cloned 26 mice from R1 cells. Nuclei from the ES cell line E14 also were shown to direct development to term. We present evidence that the nuclei of ES cells at G1- or G2/M-phases are efficiently able to support full development. Our findings demonstrate that late-passage ES cells can be used to produce viable cloned mice and provide a link between the technologies of ES cells and animal cloning. It thus may be possible to clone from a single cell a large number of individuals over an extended period.
Resumo:
During B cell development, rearrangement and expression of Ig heavy chain (HC) genes promote development and expansion of pre-B cells accompanied by the onset of Ig light chain (LC) variable region gene assembly. To elucidate the signaling pathways that control these events, we have tested the ability of activated Ras expression to promote B cell differentiation to the stage of LC gene rearrangement in the absence of Ig HC gene expression. For this purpose, we introduced an activated Ras expression construct into JH-deleted embryonic stem cells that lack the ability to assemble HC variable region genes and assayed differentiation potential by recombination activating gene (RAG) 2-deficient blastocyst complementation. We found that activated Ras expression induces the progression of B lineage cells beyond the developmental checkpoint ordinarily controlled by μ HC. Such Ras/JH-deleted B cells accumulate in the periphery but continue to express markers associated with precursor B cells including RAG gene products. These peripheral Ras/JH-deleted B cell populations show extensive Ig LC gene rearrangement but maintain an extent of κ LC gene rearrangement and a preference for κ over λ LC gene rearrangement similar to that of wild-type B cells. We discuss these findings in the context of potential mechanisms that may regulate Ig LC gene rearrangement.
Resumo:
This study was undertaken to determine the modulation of uterine function by chorionic gonadotrophin (CG) in a nonhuman primate. Infusion of recombinant human CG (hCG) between days 6 and 10 post ovulation initiated the endoreplication of the uterine surface epithelium to form distinct epithelial plaques. These plaque cells stained intensely for cytokeratin and the proliferating cell nuclear antigen. The stromal fibroblasts below the epithelial plaques stained positively for α-smooth muscle actin (αSMA). Expression of αSMA is associated with the initiation of decidualization in the baboon endometrium. Synthesis of the glandular secretory protein glycodelin, as assessed by Western blot analysis, was markedly up-regulated by hCG, and this increase was confirmed by immunocytochemistry, Northern blot analysis, and reverse transcriptase-PCR. To determine whether hCG directly modulated these uterine responses, we treated ovariectomized baboons sequentially with estradiol and progesterone to mimic the hormonal profile of the normal menstrual cycle. Infusion of hCG into the oviduct of steroid-hormone-treated ovariectomized baboons induced the expression of αSMA in the stromal cells and glycodelin in the glandular epithelium. The epithelial plaque reaction, however, was not readily evident. These studies demonstrate a physiological effect of CG on the uterine endometrium in vivo and suggest that the primate blastocyst signal, like the blastocyst signals of other species, modulates the uterine environment prior to implantation.
Resumo:
To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F1 genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F1 ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F1 ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F1 ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F1 ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F1 ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.
Resumo:
The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development.
Resumo:
To assess the role of transcriptional enhancers in regulating accessibility of the T-cell receptor beta-chain (TCRbeta) locus, we generated embryonic stem cell lines in which a single allelic copy of the endogenous TCRbeta enhancer (Ebeta) was either deleted or replaced with the immunoglobulin heavy-chain intronic enhancer. We assayed the effects of these mutations on activation of the TCRbeta locus in normal T- and B-lineage cells by RAG-2 (recombination-activating gene 2)-deficient blastocyst complementation. We found that Ebeta is required for rearrangement and germ-line transcription of the TCRbeta locus in T-lineage cells. In the absence of Ebeta, the heavy-chain intronic enhancer partially supported joining region beta-chain rearrangement in T- but not in B-lineage cells. However, ability of the heavy-chain intronic enhancer to induce rearrangements was blocked by linkage to an expressed neomycin-resistance gene (neo(r)). These results demonstrate a critical role for Ebeta in promoting accessibility of the TCRbeta locus and suggest that additional negative elements may cooperate to further modulate this process.
Resumo:
This study describes a paternal effect on sperm aster size and microtubule organization during bovine fertilization. Immunocytochemistry using tubulin antibodies quantitated with confocal microscopy was used to measure the diameter of the sperm aster and assign a score (0-3) based on the degree of radial organization (0, least organized; 3, most organized). Three bulls (A-C) were chosen based on varying fertility (A, lowest fertility; C, highest fertility) as assessed by nonreturn to estrus after artificial insemination and in vitro embryonic development to the blastocyst stage. The results indicate a statistically significant bull-dependent difference in diameter of the sperm aster and in the organization of the sperm astral microtubules. Insemination from bull A resulted in an average sperm aster diameter of 101.4 microm (76.3% of oocyte diameter). This significantly differs (P < or = 0.0001) from the average sperm aster diameters produced after inseminations from bull B (78.2 microm; 60.8%) or bull C (77.9 microm; 57.8%), which themselves displayed no significant differences. The degree of radial organization of the sperm aster was also bull-dependent. Sperm asters organized by bull A-derived sperm had an average quality score of 1.8, which was higher than that of bull B (1.4; P < or = 0.0005) or bull C (1.2; P < or = 0.0001). Results with bulls B and C were also significantly different (P < or = 0.025). These results indicate that the paternally derived portion of the centrosome varies among males and that this variation affects male fertility, the outcome of early development, and, therefore, reproductive success.