997 resultados para biased estimation
Resumo:
Objective: To assess the relationship between Bayesian MUNE and histological motor neuron counts in wild-type mice and in an animal model of ALS. Methods: We performed Bayesian MUNE paired with histological counts of motor neurons in the lumbar spinal cord of wild-type mice and transgenic SOD1 G93A mice that show progressive weakness over time. We evaluated the number of acetylcholine endplates that were innervated by a presynaptic nerve. Results: In wild-type mice, the motor unit number in the gastrocnemius muscle estimated by Bayesian MUNE was approximately half the number of motor neurons in the region of the spinal cord that contains the cell bodies of the motor neurons supplying the hindlimb crural flexor muscles. In SOD1 G93A mice, motor neuron numbers declined over time. This was associated with motor endplate denervation at the end-stage of disease. Conclusion: The number of motor neurons in the spinal cord of wild-type mice is proportional to the number of motor units estimated by Bayesian MUNE. In SOD1 G93A mice, there is a lower number of estimated motor units compared to the number of spinal cord motor neurons at the end-stage of disease, and this is associated with disruption of the neuromuscular junction. Significance: Our finding that the Bayesian MUNE method gives estimates of motor unit numbers that are proportional to the numbers of motor neurons in the spinal cord supports the clinical use of Bayesian MUNE in monitoring motor unit loss in ALS patients. © 2012 International Federation of Clinical Neurophysiology.
Resumo:
Transport Impact Assessment (TIA) -Generally a short range transport planning activity -Assess transport impacts of new developments or expansions -Present solutions to mitigate impacts Problems with TIA Process -Private vehicles focus (i.e. Veh Trip Ends) -Proxy variables (e.g. 100sqm GFA) -Trip generation rates (e.g. VTE/proxy) -Little info/guidance on trip chaining effects -Little info/guidance on non-PV modes Requires significant professional judgment
Resumo:
One of the fundamental econometric models in finance is predictive regression. The standard least squares method produces biased coefficient estimates when the regressor is persistent and its innovations are correlated with those of the dependent variable. This article proposes a general and convenient method based on the jackknife technique to tackle the estimation problem. The proposed method reduces the bias for both single- and multiple-regressor models and for both short- and long-horizon regressions. The effectiveness of the proposed method is demonstrated by simulations. An empirical application to equity premium prediction using the dividend yield and the short rate highlights the differences between the results by the standard approach and those by the bias-reduced estimator. The significant predictive variables under the ordinary least squares become insignificant after adjusting for the finite-sample bias. These discrepancies suggest that bias reduction in predictive regressions is important in practical applications.
Resumo:
A cost estimation method is required to estimate the life cycle cost of a product family at the early stage of product development in order to evaluate the product family design. There are difficulties with existing cost estimation techniques in estimating the life cycle cost for a product family at the early stage of product development. This paper proposes a framework that combines a knowledge based system and an activity based costing techniques in estimating the life cycle cost of a product family at the early stage of product development. The inputs of the framework are the product family structure and its sub function. The output of the framework is the life cycle cost of a product family that consists of all costs at each product family level and the costs of each product life cycle stage. The proposed framework provides a life cycle cost estimation tool for a product family at the early stage of product development using high level information as its input. The framework makes it possible to estimate the life cycle cost of various product family that use any types of product structure. It provides detailed information related to the activity and resource costs of both parts and products that can assist the designer in analyzing the cost of the product family design. In addition, it can reduce the required amount of information and time to construct the cost estimation system.
Resumo:
Motor unit number estimation (MUNE) is a method which aims to provide a quantitative indicator of progression of diseases that lead to loss of motor units, such as motor neurone disease. However the development of a reliable, repeatable and fast real-time MUNE method has proved elusive hitherto. Ridall et al. (2007) implement a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm to produce a posterior distribution for the number of motor units using a Bayesian hierarchical model that takes into account biological information about motor unit activation. However we find that the approach can be unreliable for some datasets since it can suffer from poor cross-dimensional mixing. Here we focus on improved inference by marginalising over latent variables to create the likelihood. In particular we explore how this can improve the RJMCMC mixing and investigate alternative approaches that utilise the likelihood (e.g. DIC (Spiegelhalter et al., 2002)). For this model the marginalisation is over latent variables which, for a larger number of motor units, is an intractable summation over all combinations of a set of latent binary variables whose joint sample space increases exponentially with the number of motor units. We provide a tractable and accurate approximation for this quantity and also investigate simulation approaches incorporated into RJMCMC using results of Andrieu and Roberts (2009).
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
This paper proposes a new approach for state estimation of angles and frequencies of equivalent areas in large power systems with synchronized phasor measurement units. Defining coherent generators and their correspondent areas, generators are aggregated and system reduction is performed in each area of inter-connected power systems. The structure of the reduced system is obtained based on the characteristics of the reduced linear model and measurement data to form the non-linear model of the reduced system. Then a Kalman estimator is designed for the reduced system to provide an equivalent dynamic system state estimation using the synchronized phasor measurement data. The method is simulated on two test systems to evaluate the feasibility of the proposed method.
Resumo:
Despite the prominent use of the Suchey-Brooks (S-B) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations. This study assessed the accuracy of the S-B method to a contemporary adult population in Queensland, Australia and provides robust age parameters calibrated for our population. Three-dimensional surface reconstructions were generated from computed tomography scans of the pubic symphysis of male and female Caucasian individuals aged 15–70 years (n = 195) in Amira® and Rapidform®. Error was analyzed on the basis of bias, inaccuracy and percentage correct classification for left and right symphyseal surfaces. Application of transition analysis and Chi-square statistics demonstrated 63.9% and 69.7% correct age classification associated with the left symphyseal surface of Australian males and females, respectively, using the S-B method. Using Bayesian statistics, probability density distributions for each S-B phase were calculated, providing refined age parameters for our population. Mean inaccuracies of 6.77 (±2.76) and 8.28 (±4.41) years were reported for the left surfaces of males and females, respectively; with positive biases for younger individuals (<55 years) and negative biases in older individuals. Significant sexual dimorphism in the application of the S-B method was observed; and asymmetry in phase classification of the pubic symphysis was a frequent phenomenon. These results recommend that the S-B method should be applied with caution in medico-legal death investigations of Queensland skeletal remains and warrant further investigation of reliable age estimation techniques.
Resumo:
Background: Daylight availability data are essential for designing effectively day lighted buildings. In respect to no available daylight availability data in Iran, illuminance data on the south facing vertical surfaces were estimated using a proper method. Methods: An illuminance measuring set was designed for measuring vertical illuminances for standard times over 15 days at one hour intervals from 9 a.m. to 3 p.m. at three measuring stations (Hamadan, Eshtehard and Kerman). Measuring data were used to confirm predicted by the IESNA method. Results: Measurement of respective illuminances on the south vertical surfaces resulted in minimum values of 10.5 KLx, mean values of 33.59 KLx and maximum values of 79.6 KLx. Conclusion: In this study was developed a regression model between measured and calculated data of south facing vertical illuminance. This model, have a good linear correlation between measured and calculated values (r= 0.892).
Resumo:
A comprehensive one-dimensional meanline design approach for radial inflow turbines is described in the present work. An original code was developed in Python that takes a novel approach to the automatic selection of feasible machines based on pre-defined performance or geometry characteristics for a given application. It comprises a brute-force search algorithm that traverses the entire search space based on key non-dimensional parameters and rotational speed. In this study, an in-depth analysis and subsequent implementation of relevant loss models as well as selection criteria for radial inflow turbines is addressed. Comparison with previously published designs, as well as other available codes, showed good agreement. Sample (real and theoretical) test cases were trialed and results showed good agreement when compared to other available codes. The presented approach was found to be valid and the model was found to be a useful tool with regards to the preliminary design and performance estimation of radial inflow turbines, enabling its integration with other thermodynamic cycle analysis and three-dimensional blade design codes.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.
Resumo:
This paper introduces a high-speed, 100Hz, visionbased state estimator that is suitable for quadrotor control in close quarters manoeuvring applications. We describe the hardware and algorithms for estimating the state of the quadrotor. Experimental results for position, velocity and yaw angle estimators are presented and compared with motion capture data. Quantitative performance comparison with state-of-the-art achievements are also presented.
Resumo:
Population-representative data for dioxin and PCB congener concentrations are available for the Australian population based on measurements in age- and gender-specific serum pools.1 Such data provide a basis for characterizing the mean concentrations of these compounds in the population, but do not provide information on the inter-individual variation in serum concentrations that may exist in the population within an age- and gender-specific group. Such variation may occur due to inter-individual differences in long-term exposure levels or elimination rates. Reference values are estimates of upper percentiles (often the 95th percentile) of measured values in a defined population that can be used to evaluate data from individuals in the population in order to identify concentrations that are elevated, for example, from occupational exposures.2 The objective of this analysis is to estimate reference values corresponding to the 95th percentile (RV95s) for Australia on an age-specific basis for individual dioxin-like congeners based on measurements in serum pools from Toms and Mueller (2010).