983 resultados para best linear unbiased predictor
Resumo:
Novel insights into intra-cellular signalling involved in pemphigus vulgaris (PV), an autoimmune blistering disease of skin and mucous membranes, are now revealing new therapeutic approaches such as the chemical inhibition of PV-associated signals in conjunction with standard immunosuppressive therapy. However, extensive inhibition of signalling molecules that are required for normal tissue function and integrity may hamper this approach. Using a neonatal PV mouse model, we demonstrate that epidermal blistering can be prevented in a dose-dependent manner by clinically approved EGFR inhibitors erlotinib and lapatinib, but only up to approximately 50% of normal EGFR activity. At lower EGFR activity, blisters again aggravated and were highly exacerbated in mice with a conditional deletion of EGFR. Statistical analysis of the relation between EGFR activity and the extent of skin blistering revealed the best fit with a non-linear, V-shaped curve with a median break point at 52% EGFR activity (P = 0.0005). Moreover, lapatinib (a dual EGFR/ErbB2 inhibitor) but not erlotinib significantly reduced blistering in the oral cavity, suggesting that signalling mechanisms differ between PV predilection sites. Our results demonstrate that future clinical trials evaluating EGFR/ErbB2 inhibitors in PV patients must select treatment doses that retain a specific level of signal molecule activity. These findings may also be of relevance for cancer patients treated with EGFR inhibitors, for whom skin lesions due to extensive EGFR inhibition represent a major threat.
Resumo:
BACKGROUND Urinary creatinine excretion is used as a marker of completeness of timed urine collections, which are a keystone of several metabolic evaluations in clinical investigations and epidemiological surveys. The current reference values for 24-hour urinary creatinine excretion rely on observations performed in the 1960s and 1970s in relatively small and mostly selected groups, and may thus poorly fit to the present-day general European population. The aim of this study was to establish and validate anthropometry-based age- and sex-specific reference values of the 24-hour urinary creatinine excretion on adult populations with preserved renal function. METHODS We used data from two independent Swiss cross-sectional population-based studies with standardised 24-hour urinary collection and measured anthropometric variables. Only data from adults of European descent, with estimated glomerular filtration rate (eGFR) ≥60 ml/min/1.73 m(2) and reported completeness of the urinary collection were retained. A linear regression model was developed to predict centiles of the 24-hour urinary creatinine excretion in 1,137 participants from the Swiss Survey on Salt and validated in 994 participants from the Swiss Kidney Project on Genes in Hypertension. RESULTS The mean urinary creatinine excretion was 193 ± 41 μmol/kg/24 hours in men and 151 ± 38 μmol/kg/24 hours in women in the Swiss Survey on Salt. The values were inversely correlated with age and body mass index (BMI). Based on current reference values (177 to 221 μmol/kg/24 hours in men and 133 to 177 μmol/kg/24 hours in women), 56% of the urinary collections in the whole population and 67% in people >60 years old would have been considered as inaccurate. A linear regression model with sex, BMI and age as predictor variables was found to provide the best prediction of the observed values and showed a good fit when applied to the validation population. CONCLUSIONS We propose a validated prediction equation for 24-hour urinary creatinine excretion in the general European population, based on readily available variables such as age, sex and BMI, and a few derived normograms to ease its clinical application. This should help healthcare providers to interpret the completeness of a 24-hour urine collection in daily clinical practice and in epidemiological population studies.
Resumo:
UNLABELLED Early assessment of response at 3 months of tyrosine kinase inhibitor treatment has become an important tool to predict favorable outcome. We sought to investigate the impact of relative changes of BCR-ABL transcript levels within the initial 3 months of therapy. In order to achieve accurate data for high BCR-ABL levels at diagnosis, beta glucuronidase (GUS) was used as a reference gene. Within the German CML-Study IV, samples of 408 imatinib-treated patients were available in a single laboratory for both times, diagnosis and 3 months on treatment. In total, 301 of these were treatment-naïve at sample collection. RESULTS (i) with regard to absolute transcript levels at diagnosis, no predictive cutoff could be identified; (ii) at 3 months, an individual reduction of BCR-ABL transcripts to the 0.35-fold of baseline level (0.46-log reduction, that is, roughly half-log) separated best (high risk: 16% of patients, 5-year overall survival (OS) 83% vs 98%, hazard ratio (HR) 6.3, P=0.001); (iii) at 3 months, a 6% BCR-ABL(IS) cutoff derived from BCR-ABL/GUS yielded a good and sensitive discrimination (high risk: 22% of patients, 5-year OS 85% vs 98%, HR 6.1, P=0.002). Patients at risk of disease progression can be identified precisely by the lack of a half-log reduction of BCR-ABL transcripts at 3 months.
Resumo:
BACKGROUND Because computed tomography (CT) has advantages for visualizing the manifestation of necrosis and local complications, a series of scoring systems based on CT manifestations have been developed for assessing the clinical outcomes of acute pancreatitis (AP), including the CT severity index (CTSI), modified CTSI, etc. Despite the internationally accepted CTSI having been successfully used to predict the overall mortality and disease severity of AP, recent literature has revealed the limitations of the CTSI. Using the Delphi method, we establish a new scoring system based on retrocrural space involvement (RCSI), and compared its effectiveness at evaluating the mortality and severity of AP with that of the CTSI. METHODS We reviewed CT images of 257 patients with AP taken within 3-5 days of admission in 2012. The RCSI scoring system, which includes assessment of infectious conditions involving the retrocrural space and the adjacent pleural cavity, was established using the Delphi method. Two radiologists independently assessed the RCSI and CTSI scores. The predictive points of the RCSI and CTSI scoring systems in evaluating the mortality and severity of AP were estimated using receiver operating characteristic (ROC) curves. PRINCIPAL FINDINGS The RCSI score can accurately predict the mortality and disease severity. The area under the ROC curve for the RCSI versus CTSI score was 0.962±0.011 versus 0.900±0.021 for predicting the mortality, and 0.888±0.025 versus 0.904±0.020 for predicting the severity of AP. Applying ROC analysis to our data showed that a RCSI score of 4 was the best cutoff value, above which mortality could be identified. CONCLUSION The Delphi method was innovatively adopted to establish a scoring system to predict the clinical outcome of AP. The RCSI scoring system can predict the mortality of AP better than the CTSI system, and the severity of AP equally as well.
Resumo:
Effects of conspecific neighbours on survival and growth of trees have been found to be related to species abundance. Both positive and negative relationships may explain observed abundance patterns. Surprisingly, it is rarely tested whether such relationships could be biased or even spurious due to transforming neighbourhood variables or influences of spatial aggregation, distance decay of neighbour effects and standardization of effect sizes. To investigate potential biases, communities of 20 identical species were simulated with log-series abundances but without species-specific interactions. No relationship of conspecific neighbour effects on survival or growth with species abundance was expected. Survival and growth of individuals was simulated in random and aggregated spatial patterns using no, linear, or squared distance decay of neighbour effects. Regression coefficients of statistical neighbourhood models were unbiased and unrelated to species abundance. However, variation in the number of conspecific neighbours was positively or negatively related to species abundance depending on transformations of neighbourhood variables, spatial pattern and distance decay. Consequently, effect sizes and standardized regression coefficients, often used in model fitting across large numbers of species, were also positively or negatively related to species abundance depending on transformation of neighbourhood variables, spatial pattern and distance decay. Tests using randomized tree positions and identities provide the best benchmarks by which to critically evaluate relationships of effect sizes or standardized regression coefficients with tree species abundance. This will better guard against potential misinterpretations.
Resumo:
Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.
Resumo:
With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^
Resumo:
With most clinical trials, missing data presents a statistical problem in evaluating a treatment's efficacy. There are many methods commonly used to assess missing data; however, these methods leave room for bias to enter the study. This thesis was a secondary analysis on data taken from TIME, a phase 2 randomized clinical trial conducted to evaluate the safety and effect of the administration timing of bone marrow mononuclear cells (BMMNC) for subjects with acute myocardial infarction (AMI).^ We evaluated the effect of missing data by comparing the variance inflation factor (VIF) of the effect of therapy between all subjects and only subjects with complete data. Through the general linear model, an unbiased solution was made for the VIF of the treatment's efficacy using the weighted least squares method to incorporate missing data. Two groups were identified from the TIME data: 1) all subjects and 2) subjects with complete data (baseline and follow-up measurements). After the general solution was found for the VIF, it was migrated Excel 2010 to evaluate data from TIME. The resulting numerical value from the two groups was compared to assess the effect of missing data.^ The VIF values from the TIME study were considerably less in the group with missing data. By design, we varied the correlation factor in order to evaluate the VIFs of both groups. As the correlation factor increased, the VIF values increased at a faster rate in the group with only complete data. Furthermore, while varying the correlation factor, the number of subjects with missing data was also varied to see how missing data affects the VIF. When subjects with only baseline data was increased, we saw a significant rate increase in VIF values in the group with only complete data while the group with missing data saw a steady and consistent increase in the VIF. The same was seen when we varied the group with follow-up only data. This essentially showed that the VIFs steadily increased when missing data is not ignored. When missing data is ignored as with our comparison group, the VIF values sharply increase as correlation increases.^
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^
Resumo:
La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa (por ejemplo la obtenida a partir de los alimentos ingeridos) llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Hoy en día la tecnología actual permite abordar el desarrollo del llamado “páncreas endocrino artificial”, que consta de un sensor continuo de glucosa subcutánea, una bomba de infusión subcutánea de insulina y un algoritmo de control en lazo cerrado que calcule la dosis de insulina requerida por el paciente en cada momento, según la medida de glucosa obtenida por el sensor y según unos objetivos. El mayor problema que presentan los sistemas de control en lazo cerrado son los retardos, el sensor de glucosa subcutánea mide la glucosa del líquido intersticial, que representa la que hubo en la sangre un tiempo atrás, por tanto, un cambio en los niveles de glucosa en la sangre, debidos por ejemplo, a una ingesta, tardaría un tiempo en ser detectado por el sensor. Además, una dosis de insulina suministrada al paciente, tarda un tiempo aproximado de 20-30 minutos para la llegar a la sangre. Para evitar trabajar en la medida que sea posible con estos retardos, se intenta predecir cuál será el nivel de glucosa en un futuro próximo, para ello se utilizara un predictor de glucosa subcutánea, con la información disponible de glucosa e insulina. El objetivo del proyecto es diseñar una metodología para estimar el valor futuro de los niveles de glucosa obtenida a partir de un sensor subcutáneo, basada en la identificación recursiva del sistema glucorregulatorio a través de modelos lineales y determinando un horizonte de predicción óptimo de trabajo y analizando la influencia de la insulina en los resultados de la predicción. Se ha implementado un predictor paramétrico basado en un modelo autorregresivo ARX que predice con mejor precisión y con menor RMSE que un predictor ZOH a un horizonte de predicción de treinta minutos. Utilizar información relativa a la insulina no tiene efecto en la predicción. El preprocesado, postprocesado y el tratamiento de la estabilidad tienen un efecto muy beneficioso en la predicción. Diabetes mellitusis a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. Nowadays, the actual technology allows raising the development of the “artificial endocrine pancreas”. It involves a continuous glucose sensor, an insulin bump, and a full closed loop algorithm that calculate the insulin units required by patient at any time, according to the glucose measure obtained by the sensor and any target. The main problem of the full closed loop systems is the delays, the glucose sensor measures the glucose in the interstitial fluid that represents the glucose was in the blood some time ago. Because of this, a change in the glucose in blood would take some time to be detected by the sensor. In addition, insulin units administered by a patient take about 20-30 minutes to reach the blood stream. In order to avoid this effect, it will try to predict the glucose level in the near future. To do that, a subcutaneous glucose predictor is used to predict the future glucose with the information about insulin and glucose. The goal of the proyect is to design a method in order to estimate the future valor of glucose obtained by a subcutaneous sensor. It is based on the recursive identification of the regulatory system through the linear models, determining optimal prediction horizon and analyzing the influence of insuline on the prediction results. A parametric predictor based in ARX autoregressive model predicts with better precision and with lesser RMSE than ZOH predictor in a thirty minutes prediction horizon. Using the relative insulin information has no effect in the prediction. The preprocessing, the postprocessing and the stability treatment have many advantages in the prediction.
Resumo:
A disruption predictor based on support vector machines (SVM) has been developed to be used in JET. The training process uses thousands of discharges and, therefore, high performance computing has been necessary to obtain the models. To this respect, several models have been generated with data from different JET campaigns. In addition, various kernels (mainly linear and RBF) and parameters have been tested. The main objective of this work has been the implementation of the predictor model under real-time constraints. A “C-code” software application has been developed to simulate the real-time behavior of the predictor. The application reads the signals from the JET database and simulates the real-time data processing, in particular, the specific data hold method to be developed when reading data from the JET ATM real time network. The simulator is fully configurable by means of text files to select models, signal thresholds, sampling rates, etc. Results with data between campaigns C23and C28 will be shown.
Resumo:
The study of the performance of an innovative receiver for linear Fresnel reflectors is carried out in this paper, and the results are analyzed with a physics perspective of the process. The receiver consists of a bundle of tubes parallel to the mirror arrays, resulting on a smaller cross section for the same receiver width as the number of tubes increases, due to the diminution of their diameter. This implies higher heat carrier fluid speeds, and thus, a more effective heat transfer process, although it conveys higher pumping power as well. Mass flow is optimized for different tubes diameters, different impinging radiation intensities and different fluid inlet temperatures. It is found that the best receiver design, namely the tubes diameter that maximizes the exergetic efficiency for given working conditions, is similar for the cases studied. There is a range of tubes diameters that imply similar efficiencies, which can drive to capital cost reduction thanks to the flexibility of design. In addition, the length of the receiver is also optimized, and it is observed that the optimal length is similar for the working conditions considered. As a result of this study, it is found that this innovative receiver provides an optimum design for the whole day, even though impinging radiation intensity varies notably. Thermal features of this type of receiver could be the base of a new generation of concentrated solar power plants with a great potential for cost reduction, because of the simplicity of the system and the lower weigh of the components, plus the flexibility of using the receiver tubes for different streams of the heat carrier fluid.
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
At the level of the cochlear nucleus (CN), the auditory pathway divides into several parallel circuits, each of which provides a different representation of the acoustic signal. Here, the representation of the power spectrum of an acoustic signal is analyzed for two CN principal cells—chopper neurons of the ventral CN and type IV neurons of the dorsal CN. The analysis is based on a weighting function model that relates the discharge rate of a neuron to first- and second-order transformations of the power spectrum. In chopper neurons, the transformation of spectral level into rate is a linear (i.e., first-order) or nearly linear function. This transformation is a predominantly excitatory process involving multiple frequency components, centered in a narrow frequency range about best frequency, that usually are processed independently of each other. In contrast, type IV neurons encode spectral information linearly only near threshold. At higher stimulus levels, these neurons are strongly inhibited by spectral notches, a behavior that cannot be explained by level transformations of first- or second-order. Type IV weighting functions reveal complex excitatory and inhibitory interactions that involve frequency components spanning a wider range than that seen in choppers. These findings suggest that chopper and type IV neurons form parallel pathways of spectral information transmission that are governed by two different mechanisms. Although choppers use a predominantly linear mechanism to transmit tonotopic representations of spectra, type IV neurons use highly nonlinear processes to signal the presence of wide-band spectral features.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation