897 resultados para automated instruments
Resumo:
This project developed an automatic conversion software tool that takes input a from an Iowa Department of Transportation (DOT) MicroStation three-dimensional (3D) design file and converts it into a form that can be used by the University of Iowa’s National Advanced Driving Simulator (NADS) MiniSim. Once imported into the simulator, the new roadway has the identical geometric design features as in the Iowa DOT design file. The base roadway appears as a wireframe in the simulator software. Through additional software tools, textures and shading can be applied to the roadway surface and surrounding terrain to produce the visual appearance of an actual road. This tool enables Iowa DOT engineers to work with the universities to create drivable versions of prospective roadway designs. By driving the designs in the simulator, problems can be identified early in the design process. The simulated drives can also be used for public outreach and human factors driving research.
Resumo:
The creation of three-dimensional (3D) drawings for proposed designs for construction, re-construction and rehabilitation activities are becoming increasingly common for highway designers, whether by department of transportation (DOT) employees or consulting engineers. However, technical challenges exist that prevent the use of these 3D drawings/models from being used as the basis of interactive simulation. Use of driving simulation to service the needs of the transportation industry in the US lags behind Europe due to several factors, including lack of technical infrastructure at DOTs, cost of maintaining and supporting simulation infrastructure—traditionally done by simulation domain experts—and cost and effort to translate DOT domain data into the simulation domain.
Resumo:
The creation of three-dimensional (3D) drawings for proposed designs for construction, re-construction and rehabilitation activities are becoming increasingly common for highway designers, whether by department of transportation (DOT) employees or consulting engineers. However, technical challenges exist that prevent the use of these 3D drawings/models from being used as the basis of interactive simulation. Use of driving simulation to service the needs of the transportation industry in the US lags behind Europe due to several factors, including lack of technical infrastructure at DOTs, cost of maintaining and supporting simulation infrastructure—traditionally done by simulation domain experts—and cost and effort to translate DOT domain data into the simulation domain.
Resumo:
The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for rapid processing of the FWD data along with a user manual. The software system automatically reads the FWD raw data collected by the JILS-20 type FWD machine that Iowa DOT owns, processes and analyzes the collected data with the rapid prediction algorithms developed during the phase I study. This system smoothly integrates the FWD data analysis algorithms and the computer program being used to collect the pavement deflection data. This system can be used to assess pavement condition, estimate remaining pavement life, and eventually help assess pavement rehabilitation strategies by the Iowa DOT pavement management team. This report describes the developed software in detail and can also be used as a user-manual for conducting simulation studies and detailed analyses. *********************** Large File ***********************
Resumo:
The purpose of this project was to determine the feasibility of using pavement condition data collected for the Iowa Pavement Management Program (IPMP) as input to the Iowa Quadrennial Need Study. The need study, conducted by the Iowa Department of Transportation (Iowa DOT) every four years, currently uses manually collected highway infrastructure condition data (roughness, rutting, cracking, etc.). Because of the Iowa DOT's 10-year data collection cycles, condition data for a given highway segment may be up to 10 years old. In some cases, the need study process has resulted in wide fluctuations in funding allocated to individual Iowa counties from one study to the next. This volatility in funding levels makes it difficult for county engineers to plan and program road maintenance and improvements. One possible remedy is to input more current and less subjective infrastructure condition data. The IPMP was initially developed to satisfy the Intermodal Surface Transportation Efficiency Act (ISTEA) requirement that federal-aid-eligible highways be managed through a pavement management system. Currently all metropolitan planning organizations (MPOs) in Iowa and 15 of Iowa's 18 RPAs participate in the IPMP. The core of this program is a statewide data base of pavement condition and construction history information. The pavement data are collected by machine in two-year cycles. Using pilot areas, researchers examined the implications of using the automated data collected for the IPMP as input to the need study computer program, HWYNEEDS. The results show that using the IPMP automated data in HWYNEEDS is feasible and beneficial, resulting in less volatility in the level of total need between successive quadrennial need studies. In other words, the more current the data, the smaller the shift in total need.
Resumo:
Kansas State University, with funding from the Kansas Department of Transportation (KDOT), has developed a computerized reduction system for profilograms produced by mechanical profilographs. The commercial version of the system (ProScan (trademark)) is marketed by Devore Systems, Inc. The system consists of an IBM Compatible PC 486SX33 computer or better, Epson LQ-570 printer, a Logitech Scanman 32 hand scanner system, a paper transport unit, and the ProScan software. The Scanner is not adaptable to IBM computers with the micro channel architecture. The Iowa DOT Transportation Centers could realize the following advantages by using ProScan: (1) Save about 5 to 8 staff hours of reduction and reporting time per Transportation Center per week for a Materials Technician 3 or 4 (the time savings would come during the busiest part of the season); (2) Reduce errors in reduction, transfer, and typing of profile values; (3) Increase the accuracy of the monitor results; and (4) Allow rapid evaluation of contractor traces when tolerance limits between monitor and certified results are exceeded.
Resumo:
This project examines similarities and differences between the automated condition data collected on and off county paved roads and the manual condition data collected by Iowa Department of Transportation (DOT) staff in 2000 and 2001. Also, the researchers will provide staff support to the advisory committee in exploring other options to the highway need process. The results show that the automated condition data can be used in a converted highway needs process with no major differences between the two methods. Even though the foundation rating difference was significant, the foundation rating weighting factor in HWYNEEDS is minimal and should not have a major impact. In terms of RUTF formula based distribution, the results clearly show the superiority of the condition-based analysis compared to the non-condition based. That correlation can be further enhanced by adding more distress variables to the analysis.
Resumo:
OBJECTIVE: Imaging during a period of minimal myocardial motion is of paramount importance for coronary MR angiography (MRA). The objective of our study was to evaluate the utility of FREEZE, a custom-built automated tool for the identification of the period of minimal myocardial motion, in both a moving phantom at 1.5 T and 10 healthy adults (nine men, one woman; mean age, 24.9 years; age range, 21-32 years) at 3 T. CONCLUSION: Quantitative analysis of the moving phantom showed that dimension measurements approached those obtained in the static phantom when using FREEZE. In vitro, vessel sharpness, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were significantly improved when coronary MRA was performed during the software-prescribed period of minimal myocardial motion (p < 0.05). Consistent with these objective findings, image quality assessments by consensus review also improved significantly when using the automated prescription of the period of minimal myocardial motion. The use of FREEZE improves image quality of coronary MRA. Simultaneously, operator dependence can be minimized while the ease of use is improved.
Resumo:
In a multicenter study a new, fully automated Roche Diagnostics Elecsys HBsAg II screening assay with improved sensitivity to HBsAg mutant detection was compared to well-established HBsAg tests: AxSYM HBsAg V2 (Abbott), Architect HBsAg (Abbott), Advia Centaur HBsAg (Bayer) Enzygnost HBsAg 5.0 (Dade-Behring), and Vitros Eci HBsAg (Ortho). A total of 16 seroconversion panels, samples of 60 HBsAg native mutants, and 31 HBsAg recombinant mutants, dilution series of NIBSC and PEI standards, 156 HBV positive samples comprising genotypes A to G, 686 preselected HBsAg positive samples from different stages of infection, 3,593 samples from daily routine, and 6,360 unselected blood donations were tested to evaluate the analytical and clinical sensitivity, the detection of mutants, and the specificity of the new assay. Elecsys HBsAg II showed a statistically significant better sensitivity in seroconversion panels to the compared tests. Fifty-seven out of 60 native mutants and all recombinant mutants were found positive. Among 156 HBV samples with different genotypes and 696 preselected HBsAg positive samples Elecsys HBsAg II achieved a sensitivity of 100%. The lower detection limit for NIBSC standard was calculated to be 0.025 IU/ml and for the PEI standards ad and ay it was <0.001 and <0.005 U/ml, respectively. Within 2,724 daily routine specimens and 6.360 unselected blood donations Elecsys HBsAg II showed a specificity of 99.97 and 99.88%, respectively. In conclusion the new Elecsys HBsAg II shows a high sensitivity for the detection of all stages of HBV infection and HBsAg mutants paired together with a high specificity in blood donors, daily routine samples, and potentially interfering sera.
Resumo:
This report documents work undertaken in the demonstration of a low-cost Automatic Weight and Classification System (AWACS). An AWACS procurement specification and details of the results of the project are also included. The intent of the project is to support and encourage transferring research knowledge to state and local agencies and manufacturers through field demonstrations. Presently available, Weigh-in-Motion and Classification Systems are typically too expensive to permit the wide deployment necessary to obtain representative vehicle data. Piezo electric technology has been used in the United Kingdom and Europe and is believed to be the basic element in a low-cost AWACS. Low-cost systems have been installed at two sites, one in Portland Cement Concrete (PCC) pavement in Iowa and the other in Asphaltic Cement Concrete (ACC) pavement in Minnesota to provide experience with both types of pavement. The systems provide axle weights, gross vehicle weight, axle spacing, vehicle classification, vehicle speed, vehicle count, and time of arrival. In addition, system self-calibration and a method to predict contact tire pressure is included in the system design. The study has shown that in the PCC pavement, the AWACS is capable of meeting the needs of state and federal highway agencies, producing accuracies comparable to many current commercial WIM devices. This is being achieved at a procurement cost of substantially less than currently available equipment. In the ACC pavement the accuracies were less than those observed in the PCC pavement which is concluded to result from a low pavement rigidity at this site. Further work is needed to assess the AWACS performance at a range of sites in ACC pavements.